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1 Overview

Definition 1.1. A stochastic process is a collection of random variables X1, X2, . . . , Xt param-
eterized by time.

There are a number of aspects of a stochastic process that we can examine. Among
them:

• dependencies between variables in the sequence

• various kinds of long-term averages

• the frequency at which “boundary events” occur

Some examples of stochastic processes include the following:

Definition 1.2. Random walks can be thought of as “cumulative” stochastic processes. For
example, Sn = ∑n

r=1 Xr + S0 is a random walk on the line.

Definition 1.3. Arrival processes such as the Bernoulli and Poisson processes model the
frequency of “arrivals” or “successes” in some time-dependent model. In general, we con-
sider models in which interarrival times are independent random variables.

Definition 1.4. Markov processes are sequences where the next value depends on the past
only through the current value, i.e.:

P (Xt+1 = k|X1:t) = P (Xt+1 = k|Xt) (1)

Definition 1.5. Martingales are processes where the expectation of the next value is exactly
the same as the current value, i.e.:

E [Xt+1|X1:t] = Xt (2)

Martingales frequently arise in gambling, for example, and they can be thought of as a
model of a truly fair game.

∗The primary sources for most of this material are: “Introduction to Probability,” D.P. Bertsekas and J.N. Tsit-
siklis, Athena Scientific, Belmont, MA, 2002; and “Randomized Algorithms,” R. Motwani and P. Raghavan, Cam-
bridge University Press, Cambridge, UK, 1995; and “Stochastic Processes & Models,” D. Stirzaker, Oxford Uni-
versity Press, New York, 2005; and the author’s own notes.
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2 Arrival processes

We now discuss two arrival processes, the Bernoulli process and the Poisson process, which
are discrete- and continuous-time analogs of each other, respectively.

2.1 Bernoulli process

The Bernoulli process is an arrival process consisting of a sequence of i.i.d. Bernoulli trails1,
each of which takes unit time. The key property of a Bernoulli process is that it is memory-
less, i.e.:

P (T − n = t|T > n) = P (T = t) (3)

(This formulation is derived from the definition of conditional probability.)
There are several interesting PDFs that we can examine for a Bernoulli process:

• The number S of arrivals in n trials:

fS(k) = BINOMIAL[n, p] =
(

n
k

)
pk(1− p)n−k (4)

E [S] = np (5)
var (S) = np(1− p) (6)

• The number T of trials up to and including the first “success”:

fT(n) = GEOMETRIC[p] = p(1− p)n−1 (7)

E [T] =
1
p

(8)

var (T) =
1− p

p2 (9)

• The time Yk until the kth success: this is just the sum of the first k interarrival times
T1, . . . , Tk which are i.i.d. geometric random variables. Yk is distributed according to
the “Pascal PMF (probability mass function) of order k”:

fYk (n) = PASCAL[p, k] =
(

t − 1
k − 1

)
pk(1− p)t−k (10)

E [Yk] = E

[
k

∑
i=1

Ti

]
=

k
p

(11)

var (Yk) = var

(
k

∑
i=1

Ti

)
=

k(1− p)
p2 (12)

2.2 Poisson approximation to the binomial distribution

Given a random variable Z ∼ POISSON[λ]:

fZ(k) = POISSON[λ] = e−λ λk

k!
(13)

E [Z] = λ (14)
var (Z) = λ (15)

1Bernoulli trials and Poisson trials: for a sequence of Bernoulli trials, P (Xi = 1) = p and P (Xi = 0) = 1 − p
for some fixed p. A single Poisson trial is itself just a Bernoulli trial, but when grouped into a sequence, Poisson
trials are different in that each trial may have different probabilities, i.e. P (Xi = 1) = pi and P (Xi = 0) = 1− pi .
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Claim 2.1. If n is large and p is small, then POISSON[np] ∼ BINOMIAL[n, p].

Proof: Let p = λ/n. We begin with some manipulation of the binomial distribution:

BINOMIAL[n, p] =
(

n
k

)
pk(1− p)n−k (16)

=
n!

(n − k)!k!
λk

nk

(
1− λ

n

)n−k
(17)

=
k−1

∏
i=0

n − i
n

· λk

k!
·
(

1− λ

n

)n−k
(18)

(19)

Examining each component, we see that:

lim
n→∞

k−1

∏
i=0

n − i
n

= 1 (20)

lim
n→∞

(
1− λ

n

)n−k
= lim

n→∞

(
1− λ

n

)n
·
(

1− λ

n

)−k
(21)

= 1 · e−λ (22)

(The last equality follows from the identity limn→∞
(
1 + x

n
)n = ex.) So we have that

lim
n→∞

BINOMIAL[n, p] = e−λ λk

k!
= POISSON[λ] (23)

In general, the Poisson approximation is valid to within several decimal places if n ≥
100 and p ≤ 0.01.

2.3 Poisson process

The Poisson process is the continuous-time analog of the Bernoulli process. Let P (k, τ)
be the probability that k arrivals occur during an interval of length τ. Then a process is
Poisson if it meets the following properties:

• Time-homogeneity: P (k, τ) is the same for any interval of length τ

• Independence: the number of arrivals during an interval is independent of the history
of arrivals outside the interval

• Small interval probabilities: P (k > 1, τ) is negligible in comparison to P (0, τ) and P (1, τ)
as τ decreases.

We examine the last property further. If a process is Poisson, then the PDF describing the
number of arrivals in a length-τ interval is:

P (k, τ) = POISSON[λτ] = e−λτ (λτ)k

k!
(24)

Taking the Taylor expansion for different values of k, we see that:

P (0, τ) = e−λτ Taylor
= 1− λτ + O(τ2) (25)

P (1, τ) = e−λτλτ
Taylor
= λτ + O(τ2) (26)

P (k > 1, τ) = O(τ2) (27)
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which verifies the final property stated above.
There are some other interesting PDFs, similar to those we examined for the Bernoulli

process:

• The time T until the first arrival. Note that T > t if and only if there were no arrivals
in [0, t], so:

FT(t) = P (P ≤ t) = 1− P (T > t) = 1− P (0, t) = 1− e−λt (28)

fT(t) =
dFT
dt

= λe−λt = EXPONENTIAL[λ] (29)

E [T] =
1
λ

(30)

var (T) =
1

λ2 (31)

• The time Yk until the kth arrival. This is again just the sum of the first k interarrival
times, so Yk follows the “Erlang PDF of order k,” i.e.:

fYk (y) = ERLANG[λ, k] =
λkyk−1e−λy

(k − 1)!
(32)

E [Yk] =
k
λ

(33)

var (Yk) =
k

λ2 (34)

2.4 Random incidence paradox

Suppose we have a Poisson process and we fix some time t∗. Then what is the length L of
the interarrival interval2 that contains t∗? Note that t∗ is not a random varaible, but L is.
We’ll assume that the process has been running long enough that there have been previous
arrivals.

Intuitively, it seems that we’d expect L to be the length of a “typical” interarrival inter-
val, i.e. L ∼ EXPONENTIAL[λ]. However, this is not the case!

Consider the following graphical depiction:

arrival

U V
t∗

time

arrival

At time U, the previous arrival occurs, and at time V, the next arrival occurs. The time
we’ve fixed, t∗, falls between U and V. Clearly, the length of the interarrival interval in
which t∗ falls is then:

L = (t∗ −U) + (V − t∗) (35)

Because of the memorylessness property of a Poisson process, (t∗ − U) and (V − t∗) are
independent random variables, each distributed according to an exponential distribution
with parameter λ. (Note that when running a Poisson process “backwards” in time, it

2Interarrival interval: the interval between two consecutive arrivals.
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also remains Poisson.) Thus, L is the sum of two exponential random variables, i.e. L ∼
ERLANG[λ, 2] and E [L] = 2/λ.

The intuition behind this apparent paradox is that an arrival at an arbitrary time is more
likely to fall in a large interval rather than a small one, so the expected length of the interval
in which it falls is longer than the average interarrival time.

3 Markov chains

We now consider stochastic processes where the value at some time takes on one of a fi-
nite set of states. Together with a model of the transitions between states and a few other
properties, we have processes known as Markov chains.

Definition 3.1. In a discrete-time Markov chain, transitions require unit time. Such a chain
has the following properties:

• A set of states S = {1, . . . , m}

• A matrix P of transition probabilities, with:

– Pij = P (Xn+1 = j|Xn = i)
– ∑m

j=1 Pij = 1 for all i

• The Markov property is met:

P (Xn+1 = x|X0:n) = P (Xn+1 = x|Xn) (36)

Note that given a distribution for the initial state, we can compute a distribution for the
history X0:n of the Markov chain. For some history x0:n:

P (X0 = x0, . . . , Xn = xn) =
n

∏
i=0

Pxixi+1 (37)

Definition 3.2. We define the n-step transition probability as the distribution of the state at
some future time, conditioned on the current state. We specify this as:

rij(n) = P (Xn = j|X0 = i) (38)

Total prob.
=

m

∑
k=1

P (Xn−1 = k|X0 = i) P (Xn = j|Xn−1 = k, X0 = i) (39)

Markov=
m

∑
k=1

P (Xn−1 = k|X0 = i) P (Xn = j|Xn−1 = k) (40)

=
m

∑
k=1

rik(n − 1)Pkj (41)

Equation 41 is known as the Chapman-Kolmogorov Equation.

3.1 Properties of states and chains

Definition 3.3. A state j is accessible from i if there is some n such that rij > 0. (It is possible
to reach j from i in n steps.) We define the set A(i) as:

A(i) , {j ∈ S | j is accessible from i} (42)

5



Definition 3.4. A state i is recurrent if for all j ∈ A(i) it is true that i ∈ A(j). In other words,
given enough time, we will always return to i; it is only possible from i to reach states
where there is some probability of returning to i.

Definition 3.5. A state i is transient if it is not recurrent. Given enough time, we will even-
tually enter a state from which it is impossible to return to i. Thus, i will be visited a finite
number of times.

The following picture depicts recurrent and transient states:

1 2 3 4

States 1, 3, and 4 are recurrent, while state 2 is transient.

Definition 3.6. If state i is recurrent, A(i) forms a recurrent class. Then, all states in A(i) are
accessible from each other and no states outside A(i) are accessible from a state in A(i).

A Markov chain can be decomposed into one or more recurrent classes, plus some tran-
sient states. Once the process enters a recurrent class, the process remains in that class
forever and all states in the class are visited an infinite number of times. If X0 is transient,
then for some k, X0:k are all transient and Xk+1:∞ are all in the same recurrent class.

Definition 3.7. Let R be some recurrent class. R is periodic if its states can be grouped
into d > 1 disjoint subsets S1, . . . , Sd such that all transitions from Sk lead to Sk+1 and all
transitions from Sd lead to S1. In other words, the states in R can be partitioned like the
following:

A recurrent class that is not periodic is termed aperiodic.

Definition 3.8. An ergodic state is one that is both aperiodic and recurrent.

Definition 3.9. An ergodic Markov chain is one in which all states are ergodic.
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3.2 Steady-state behavior

It is frequently useful to analyze the long-term state occupancy behavior of a Markov chain.
In other words, what is the behavior of rij(n) as n becomes large?

First, note that if there are multiple recurrent classes, limn→∞ rij(n) depends on the
initial state. Furthermore, even if there is a single recurrent class, rij(n) may not converge
if the class is periodic, as seen in the following simple example:

1 2

Here, regardless of the length of the process, we have:

rii(n) =
{

1 if n is even
0 if n is odd (43)

Definition 3.10. For these reasons, we restrict our study of convergence to Markov chains
with a single aperiodic recurrent class. For such a Markov chain, we have:

lim
n→∞

rij(n) = πj ≈ P (Xn = j) (44)

Here, πj is the steady-state probability of j.

Definition 3.11. Combining the above with the Chapman-Kolmogorov Equation:

lim
n→∞

m

∑
k=1

rik(n − 1)Pkj = πj (45)

m

∑
k=1

πkPkj = πj (46)

The equations 46 are known as the balance equations.

We can consider the balance equations together with the normalization equation ∑m
k=1 πk =

1 and form a system of equations, which can be solved to obtain the πj’s. A property of the
solution is that πj = 0 if j is transient, and πj > 0 otherwise.

The steady-state probabilities can be thought of as expected state frequencies. For a Markov
chain with a single aperiodic recurrent class,

πj = lim
n→∞

vij(n)
n

(47)

where vij(n) is the expected value of the number of visits to j within the first n transitions,
starting from i.

We can also examine the frequency of transitions. Let qjk(n) be the expected number of
times the transition from j to k is taken in the first n steps. Then:

lim
n→∞

qjk(n)
n

= πjPjk (48)
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3.3 Absorption

It is also useful to analyze the short-term behavior of Markov chains. An important ques-
tion is: if we start in a transient state, how long will it be until we enter the first recurrent
state? Since what happens afterward does not matter, we focus on the case where every
recurrent state is absorbing, i.e. Pkk = 1.

Definition 3.12. Fix some absorbing state s. The probability that s is eventually reached,
starting from state i, is termed the absorption probability:

ai = P (Xn eventually becomes s|X0 = i) (49)

Clearly, we have as = 1. Furthermore, for all absorbing i 6= s, ai = 0. The remaining case is
that in which i is transient. Let A be the event that s is eventually reached. For a transient
state i, we have:

ai = P (A|X0 = i) (50)

=
m

∑
j=1

P (A|X0 = i, X1 = j) P (X1 = j|X0 = j) (51)

Markov=
m

∑
j=1

P (A|X1 = j) Pij (52)

=
m

∑
j=1

ajPij (53)

The equations for ai form a system which we can solve to obtain the absorption probabili-
ties.

There are several other related properties that we can examine.

Definition 3.13. Expected time to absorption: the time until we enter some recurrent state.
Let

µi = E [num. transitions until a recurrent state is entered|X0 = i] (54)
= E [min{n ≥ 0|Xn is recurrent}|X0 = i] (55)

Then:

µi =
{

0 if i is recurrent
1 + ∑m

j=1 Pijµj if i is transient (56)

These equations can be solved to find the unique expected time to absorption.

Definition 3.14. Mean first passage time ti: the time until we reach recurrent state s, starting
from i.

ti =
{

0 if i = s
1 + ∑m

j=1 Pijtj otherwise (57)

These equations can again be solved to find the unique mean first passage time.

Definition 3.15. Mean recurrence time t∗s : the number of transitions up to the first return to
s, starting from s:

t∗s = 1 +
m

∑
j=1

Psjtj (58)
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3.4 Continuous-time Markov chains

Definition 3.16. In a continuous-time Markov chain, the time between transitions is a contin-
uous random variable. We define the following random variables:

Xn , state after the nth transition (59)
Yn , time of the nth transition (60)
Tn , time between the (n − 1)st and nth transitions (61)

Definition 3.17. For some state i, the time T until the next transition is distributed accord-
ing to EXPONENTIAL[νi] where νi is the transition rate, i.e. the average number of transitions
out of i per unit time spent in i. We assume that T is independent of the past history of the
process and the next state.

Definition 3.18. A continuous-time Markov chain defines the transition probability matrix
as before. Combining this with the transition rate, we define qij = νiPij to be the transition
rate from i to j, i.e. the average number of transitions from i to j per unit time spent in i.

As essentially the same steady-state convergence results apply for continuous-time
Markov chains as for discrete-time Markov chains, we omit further discussion.
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