
CSCI-6971 Lecture Notes: Monte Carlo integration∗

Kristopher R. Beevers
Department of Computer Science
Rensselaer Polytechnic Institute

beevek@cs.rpi.edu

February 21, 2006

1 Overview

Consider the following equation which arises frequently in robotics:

E [h(x)] =
∫
A

h(x) f (x) dx (1)

where f (x) is a PDF. We are often interested in computing some expected value, for exam-
ple as part of an estimation or inference process. More generally, we need to compute the
value of an integral:

I =
∫
A

g(x) dx (2)

It is often the case that I is difficult or impossible to compute analytically. Furthermore, x is
frequently many-dimensional. The question then arises: how can we approximate the value
of I efficiently?

1.1 Riemann approximation

A simple technique for approximating the value of an integral is to divide the region A into
many small hypercubes, compute the value of g(x) at a point in each of these hypercubes,
and sum the results. For example, if A = [0, 1]d and I =

∫
A g(x) dx:

Î = ε
N

∑
i=1

g(ε · offseti) (3)

where ε is size of the d-dimensional hypercubes and is small, offseti is the d-dimensional
“index” of the ith hypercube in the hypergrid, and N = 1/εd. This technique is known as
the Riemann approximation.

One problem with the Riemann approximation is that the estimation error | Î − I| can be
arbitrarily bad for functions with unbounded derivatives: the variance of g in an ε-sized

∗The primary sources for most of this material are: “Numerical Methods in Finance,” P. Brandimarte, John
Wiley & Sons, New York, 2002; “Monte Carlo Methods Vol. 1: Basics,” M.H. Kalos and P.A. Whitlock, John
Wiley & Sons, New York, 1986; “Monte Carlo Strategies in Scientific Computing,” J.S. Liu, Springer, 2002; and the
author’s own notes.

1

hypercube can be large, and thus the value of g at a single point in the hypercube may not
be representative of the integral of g over that hypercube. If, however, the derivative of g
is bounded, e.g.:

|g(x)− g(x′)| ≤ B||x − x′|| (4)

then the error of the Riemann approximation is also bounded:

| Î − I| = O

(
B
√

d
N1/d

)
(5)

(We will leave this result unproven.) Note that for a fixed N, the error increases expo-
nentially in the dimension of the space. This property is often referred to as the “curse of
dimensionality” and is a consequence of the fact that the volume of a hypercube is εd.

From Equation 5 we see that as d increases, to guarantee a fixed error we must increase
N exponentially (i.e. we must keep ε constant). Thus while the Riemann approximation
works well for computing low-dimensional integrals, it quickly becomes intractable as di-
mension increases.

1.2 Monte Carlo integration

Consider the following alternative approach to estimating I. First, draw N samples xi ∼
f (x) where f (x) is some probability distribution over A. Often f (x) is taken to be uniform
over A. Let Xi = g(xi). Now compute:

Î =
vol(A)

N

N

∑
i=1

Xi (6)

This technique is known as Monte Carlo integration.

Definition 1.1. A Monte Carlo method is a technique that makes use of random numbers to
perform a calculation that can be modeled as a stochastic process.

It is not difficult to see that E
[
Î
]

= I. Furthermore, we see that var
(

Î
)

= var (Xi) /N

which means that the error | Î − I| =
√

var
(

Î
)

decreases as 1/
√

N. This seems almost like
a miracle because there is no dependence on d. Monte Carlo integration does not suffer
from the curse of dimensionality.

Let us examine this property more thoroughly. A useful tool is Hoeffding’s inequality,
which is a direct result of the Chernoff bound. If N xi’s are independently drawn from the
same distribution such that xi ∈ [A, A′] for all i, then:

P

(∣∣∣∣∣ N

∑
i=1

xi −
N

∑
i=1

E [xi]

∣∣∣∣∣ ≥ ε

)
≤ 2e

−2ε2
N(A−A′) (7)

Plugging in Î and I we have:

P
(
| Î − I| ≥ ε

)
= P

(∣∣∣∣∣ N

∑
i=1

g(xi)− NI

∣∣∣∣∣ ≥ Nε

)
≤ 2e

−2Nε2

B2d (8)

The denominator in the exponent on the right hand side is a result of our assumption of a
bounded derivative of g over the interval [A, A′] (Equation 4). Suppose we choose some
desired confidence level η = 2e−2Nε2/B2d. Then solving for ε:

ε =

√√√√B2d log
(

2
η

)
2N

(9)

2

and it follows that with probability at least 1− η,

| Î − I| ≤ c

(
B
√

d√
N

)
(10)

where c =
√

log(2/η)/2. Thus, as expected, | Î − I| = O(B
√

d/
√

N). Note that we can fix
any two of N, ε, or η and solve for the other.

The primary attraction of Monte Carlo methods is their immunity to the curse of di-
mensionality. When computing low-dimensional integrals basic Monte Carlo techniques
are not competitive with deterministic approaches such as the Riemann approximation.
However, as dimension increases and given a fixed amount of computation time (i.e., a
fixed N), the Monte Carlo approach quickly outpaces most deterministic methods.

Of course, another factor is that implementing Monte Carlo integration is extremely
straightforward. In some cases, this aspect makes Monte Carlo methods useful even when
more complicated deterministic approaches might lead to more accurate estimates.

2 Random number generation

We now briefly switch gears and discuss the problem of generating random numbers from
a PDF f (x). This will be helpful in understanding some improvements to Monte Carlo
integration, which we will discuss next.

2.1 Inverse transform

Suppose we are able to analytically compute F(x), the CDF associated with f (x). Addition-
ally, suppose F(x) is easily invertible. Then we can use the following strategy to generate
random numbers according to f (x), given a simple uniform random number generator:
draw U ∼ UNIFORM[0, 1], and return X = F−1(U). It is easy to see that X is indeed drawn
from the desired distribution:

P (X ≤ x) = P
(

F−1(U) ≤ x
)

= P (U ≤ F(x)) = F(x) (11)

The major limitation with the inverse transform is that it requires an invertible CDF.
In some cases the requirement is easily met, as with the exponential distribution X ∼ eµ,
where F(x) = 1− eµx so F−1(x) = − ln(1−U)/µ.

2.2 Acceptance-rejection

A more general technique can be used when F(x) is hard to invert. Suppose we know some
function t(x) such that t(x) ≥ f (x) for all x in the support A of f . Since f (x) is a PDF, t(x)
is clearly not, but we can define a PDF as follows:

r(x) =
t(x)∫

A t(x) dx
(12)

If it is easy for us to simulate r(x) using Monte Carlo techniques then we can use the
following procedure to generate random variables according to f :

1. Generate Y ∼ r(x)

2. Generate U ∼ UNIFORM[0, 1]

3

3. if U ≤ f (Y)/t(Y) return Y; otherwise repeat the process.

The following picture illustrates the idea:

t(x)

f (x)

A B

Suppose we draw Y = A. Then the sample is likely to be “accepted” since f (A)/t(A) is
close to 1. On the other hand, if we draw Y = B the sample is likely to be “rejected” since
f (B)/t(B) is small. This matches what we’d expect based on inspection of f .

The average number of iterations of the procedure required for a sample to be accepted
is
∫
A t(x) dx. For this reason it is desirable for t to “fit” f as closely as possible while

meeting the condition t(x) ≥ f (x) so that the number of iterations is minimized.

3 Variance reduction

We now turn to the problem of improving the accuracy of the Monte Carlo estimate Î of an
integral I. Recall that

| Î − I| =

√
var (Xi)

N
(13)

since Î is the sum of N independent identically distributed random variables. Clearly we
can decrease the error by increasing N, the number of samples. However this approach has
diminishing returns since the error decreases as O(1/

√
N). An alternative is to decrease

the variance of the samples. Much of the work on Monte Carlo methods has focused on
so-called variance reduction techniques.

3.1 Antithetic variates

Suppose we were to generate 2N samples:

X1, X2, . . . , XN (14)
Y1, Y2, . . . , YN

Now, define Zi = Xi+Yi
2 for all i = 1 . . . N, and compute Ĩ = 1

N ∑N
i=1 Zi as our Monte Carlo

estimate. As before, var
(

Ĩ
)

= var (Zi) /N. However, it is possible for Ĩ to be a better
estimate of I than the vanilla Monte Carlo estimate Î computed using 2N samples!

The key insight is that by introducing correlation between Xi and Yi we can affect the
variance of Zi since if Xi and Yi are not independent:

var (Zi) = var
(

Xi + Yi
2

)
=

1
4

(var (Xi) + var (Yi) + 2cov (Xi, Yi)) (15)

4

When Xi and Yi are independent, the covariance term is zero so var (Zi) = var (Xi) /2
and var

(
Ĩ
)

= var
(

Î
)
. However, if Xi and Yi are negatively correlated, cov (Xi, Yi) < 0 so

var (Zi) < var (Xi) /2 and thus var
(

Ĩ
)

< var
(

Î
)
.

This leaves the question of how to generate negatively correlated random variables.
For certain types of random variables this is reasonably straightforward. For example,
if we are trying to estimate

∫ 1
0 g(x) dx we could generate N uniform random variables

Ui ∼ UNIFORM[0, 1] and then compute Zi = (g(Ui) + g(1−Ui))/2. Similarly, to generate
negatively correlated random variables from a standard Normal distribution, we can draw
Xi ∼ N(0; 1) and compute Zi = (g(Xi) + g(−Xi))/2. Note that in fact for both of these
approaches we have generated only N random variables but our estimate is better than we
can achieve using 2N random variables with standard Monte Carlo!

There is an important limitation of this technique: the function we are integrating must be
monotonic. If the function is nonmonotonic we cannot ensure that g(Xi) and g(Yi) are neg-
atively correlated, even if Xi and Yi are negatively correlated. Thus, if g is nonmonotonic
and g(Xi) and g(Yi) are in fact positively correlated, the technique actually increases the
variance of our estimate!

3.2 Common random variates

A similar technique can be applied when our goal is to estimate the value of a function
that can be expressed as a difference between two random variables Zi = Xi − Yi. The
only difference is that Xi and Yi should be positively correlated. The same monotonicity
requirement as for antithetic variates remains.

One problem for which this technique is useful is when our goal is to estimate the
sensitivity of a parameterized function to its parameter. For example, suppose our goal is
to estimate the sensitivity of h(α) = Eω [f (α; ω)] to the parameter α. (Note that randomness
arises only through the variable ω.) In other words we wish to estimate dh(α)

dα which we
cannot compute analytically. We can instead estimate

h(α + δα)− h(α)
δα

(16)

for a small value of δα by generating samples of the difference, i.e.:

Zi ∼
f (α + δα; ω)− f (α; ω)

δα
(17)

By introducing positive correlation between f (α + δα; ω) and f (α; ω) the variance is re-
duced versus the default approach.

3.3 Control variates

Suppose we have access to some potentially useful outside information. In particular, sup-
pose our goal is to estimate E [X] and we know E [Y] = ν for some related random variable
Y. Furthermore, we know that cov (X, Y) 6= 0, although we may not actually know the
value. It seems that we should somehow be able to use our knowledge of Y to improve our
estimate of E [X].

In fact we can employ the following strategy. Generate two samples Xi and Yi. Suppose
Yi > ν and we know that cov (X, Y) > 0. Then Xi is probably also an overestimate of X, so
we correct it:

Xc
i = Xi + c(Yi − ν) (18)

5

where c is a control parameter we can choose. Then:

E [Xc
i] = E [Xi] + c(E [Yi − ν]) = E [Xi] (19)

var (Xc
i) = var (Xi) + c2var (Yi − ν) + 2c · cov (Xi, Yi − ν) (20)

= var (Xi) + c2var (Yi) + 2c · cov (Xi, Yi) (21)

It remains to determine a value of c. We want to minimize the variance so we take its
derivative:

dvar
(
Xc

i
)

dc
= 2c · var (Yi) + 2cov (Xi, Yi) (22)

Setting this equal to zero we obtain:

c∗ =
−cov (Xi, Yi)

var (Yi)
(23)

and with some manipulation we see:

var
(

Xc∗
i

)
var (Xi)

= 1− ρ2
XY (24)

In other words, we have reduced the variance of our samples and thereby reduced the
variance of our estimate. Of course we may not initially know cov (X, Y) or var (Y). A
simple solution is the use some pilot samples to estimate these values, and then proceed as
above.

3.4 Rao-Blackwellization

Rao-Blackwellization, also known as “conditioning,” is based on the idea that “one should
carry out analytical computation as much as possible.” In other words, Monte Carlo simu-
lation should be used only where necessary.

If our goal is to estimate I = E [h(x)], the standard strategy is to compute Î = 1
N ∑i Xi

where the Xi are samples of h(x). Suppose instead that we can decompose x into two parts,
x(a) and x(b), and that we can compute E

[
h(x)|x(b)

]
analytically. This suggests that we can

instead simulate only x(b) and compute

Ĩ =
1
N ∑

i
E
[

h(Xi|x
(b)
i)
]

(25)

From the Law of Iterated Expectations we have:

E [h(x)] = E
[
E
[

h(x)|x(b)
]]

(26)

and from the Law of Total variance we know:

var (h(x)) = var
(

E
[

h(x)|x(b)
])

+ E
[
var

(
h(x)|x(b)

)]
(27)

so we have:

var
(

Î
)

=
var (h(x))

N
≥

var
(

E
[

h(x)|x(b)
])

N
= var

(
Ĩ
)

(28)

6

i.e. var
(

Î
)
≥ var

(
Ĩ
)

so we have achieved some variance reduction. The basic idea here is
to break h(x) into parts (“factor” it); if we can analytically compute some of the parts, we
only need to use Monte Carlo simulation to estimate the other “subproblems.”

A problem with Rao-Blackwellization is that the factorization can be very problem de-
pendent. Another is that in some cases the analytical computation may be more expensive
than just simulating the entire system. Often, Rao-Blackwellization can be coupled with
importance sampling techniques to reduce the impact of analytical computations.

3.5 Stratified sampling

Suppose our goal is to compute the integral I =
∫
A h(x) dx such that we can decompose

A into disjoint subregions (“strata”) with h(x) being relatively homogeneous within each
strata. The idea is to compute the integral over each strata and then combine the results,
i.e.:

Ĩi =
1
Ni

Ni

∑
j=1

h(Xi
j) (29)

Ĩ =
M

∑
i=1

Ĩi (30)

Then, we have

var
(

Ĩ
)

=
M

∑
i=1

var
(

Ĩi
)

Ni
(31)

where var
(

Ĩi
)

is the variance of h(x) in strata i. As long as we can guarantee relatively low
variance within each strata, this approach can lead to a reduction in overall variance of our
estimate since normal Monte Carlo sampling yields var

(
Ĩ
)

= varA(h(x)).
Stratification can simply be done by dividing A into uniform cells. In some cases most

of the variation in h(x) lies along a subset of the dimensions of the function in which
case stratification need be done only on those dimensions. In choosing Ni, the number
of samples to assign to strata i, we should generally allocate more samples to strata with
higher variance. Some samples can be devoted to computing pilot estimates of the strata
variances, and these estimates can be used in allocating samples by solving a nonlinear
programming problem to minimize var

(
Î
)

with respect to the Nis. In many cases this
overcomplicates matters and uniform allocation of samples gives sufficient results.

3.6 Importance sampling

Our goal as usual is to compute E [h(x)] =
∫
A h(x) f (x) dx where f (x) is a PDF. Up until

now we have mostly taken f (x) to be uniform over A but it need not be. Furthermore,
f (x) (regardless of its distribution) may not be the best PDF for the purposes of Monte
Carlo integration. Intuitively, we want a PDF with similar behavior to the entire integrand.

Let us introduce a different density g(x) such that g(x) = 0 → f (x) = 0. We will term
g(x) the importance density or the proposal distribution. We start with some manipulation:

E [h(x)] =
∫

h(x) f (x) dx (32)

=
∫

h(x) f (x)
g(x)

g(x) dx (33)

= Eg

[
h(x) f (x)

g(x)

]
(34)

7

Our approach is to generate samples Xi ∼ g(x) and compute:

Ĩ =
1
N

N

∑
i=1

h(Xi) f (Xi)
g(Xi)

(35)

Clearly, our choice of g(x) is crucial in obtaining some reduction in variance. We
illustrate the optimal choice with a discrete example. Suppose our goal is to estimate
F(N) = ∑N

i=1 h(xi) where each xi belongs to a set of N discrete points, with N so large
that we cannot compute F(N) outright. We can estimate F(N) using Monte Carlo simula-
tion: F̂ = N

M ∑M
j=1 h(xj). Suppose pi = 1/N is the probability of sampling point xi. Then

using the standard Monte Carlo approach:

F̂ =
1
M

(
∑M

j=1 h(xk)

1/N

)
=

1
M

M

∑
j=1

h(xj)
pj

(36)

The idea of importance sampling is to pick pi more intelligently. For example, suppose we
pick:

pi =
h(xi)
F(N)

(37)

Then our estimate is:

F̃ =
1
M

M

∑
j=1

h(xj)
pj

=
1
M

M

∑
j=1

h(xj)F(N)
h(xj)

= F(N) (38)

In other words by choosing our proposal distribution according to Equation 37 we always
get the right answer, with zero variance, no matter how we sample! There is of course a
serious problem: Equation 37 requires F(N), which is the answer we seek, so we cannot
actually compute pi. Certainly, however, we can approximate it, e.g. using pilot samples.

Here is an algorithm for approximately optimal importance Monte Carlo integration:

1. Create N bins and compute hi(x) (the mean value of h(x)) for each bin i

2. Repeat K times:

(a) Generate Ui ∼ UNIFORM[0, 1]

(b) Pick bin k iff Fk−1 ≤ Ui < Fk where Fk = ∑k
i=1 pi with pi = hi/ ∑N

i=1 hi

(c) Generate ωi ∼ UNIFORM[0, 1
N]

(d) Set Xi = k−1
N + ωi

3. Compute 1
K ∑K

i=1
h(Xi)

Np(Xi)
where p(Xi) = h(Xi)/ ∑N

j=1 hj(Xi)

Importance sampling is useful for most situations where Monte Carlo integration is
employed, but is particularly helpful when sampling from the tails of a distribution, i.e.
when computing E [h(x)|x ∈ A] where x ∈ A is a rare event. With importance sampling,
we can use a PDF such that the event is more likely to occur.

8

