
CSCI-6971 Lecture Notes: Sequential Monte Carlo
methods∗

Kristopher R. Beevers
Department of Computer Science
Rensselaer Polytechnic Institute

beevek@cs.rpi.edu

March 7, 2006

1 Importance sampling: recap

Recall that if our goal is to compute an expected value of the form:

Eπ [h(x)] =
∫
A

h(x)π(x) dx (1)

an effective strategy is to use an importance sampling Monte Carlo strategy, which ap-
proximates the integration by summing m weighted random samples xi, i = 1 . . . m, drawn
from a proposal distribution g (also known as an importance density, trial density, or sampling
distribution):

E [h(x)] ≈ 1
m

m

∑
i=1

h(xi)π(xi)
g(xi)

(2)

which can be rewritten as:

E [h(x)] ≈ 1
m

m

∑
i=1

wih(xi) (3)

where wi = π(xi)/g(xi) is the importance weight of the ith sample.

2 Sequential importance sampling

For high-dimensional problems it is often difficult to develop a good proposal distribution
(i.e., one that closely approximates the target density π). One approach is to “build up” the
proposal density sequentially, i.e.:

1. Decompose x into x = (x1, . . . , xd), where each xi may be multidimensional.

2. Construct the proposal distribution g(x) from the product of its marginals, i.e.:

g(x) = g1(x1)g2(x2|x1) . . . gd(xd|x1, . . . , xd−1) (4)

∗The primary sources for most of this material are: “Monte Carlo Strategies in Scientific Computing,” J.S. Liu,
Springer, 2001; “Sequential Monte Carlo Methods in Practice,” A. Doucet, N. de Freitas, N. Gordon, Springer,
2001; and the author’s own notes.

1

One important advantage of this approach is that we can hope to obtain some guidance
from the target density π as we build g. First, we decompose the target density and the
importance weight in a similar manner:

π(x) = π(x1)π(x2|x1) . . . π(xd|x1, . . . , xd−1) (5)

w(x) =
π(x1)π(x2|x1) . . . π(xd|x1, . . . , xd−1)

g1(x1)g2(x2|x1) . . . gd(xd|x1, . . . , xd−1)
(6)

If we let xt = (x1, . . . , xt) then we can rewrite the weight recursively:

wt(xt) = wt−1(xt−1)
π(xt|xt−1)
gt(xt|xt−1)

(7)

From this, we can see that this approach lets us:

• stop generating further components of the sample x if the “partial weight” wt(xt) at
some time t < d becomes too small; and

• use the marginal distribution π(xt) to guide our choice of gt(xt|xt−1), i.e., pick a better
proposal distribution.

Unfortunately decomposing π and w according to Equations 5-6 is hard:

π(xt) =
∫

π(x1, . . . , xd) dxt+1 . . . dxd (8)

(This is the whole reason for employing sampling strategies in the first place.) Thus, we
cannot implement sequential importance sampling as we have described it.

Instead, suppose we can find a sequence of “auxiliary distributions” for each joint par-
tial target density, π1(x1), π2(x2), . . . , πd(xd), such that πt(xt) approximates π(xt) up to a
normalizing constant1. This allows us to construct the proper weights without knowing
the “real” joint partial target densities. Given these auxiliary distributions, we can imple-
ment sequential importance sampling:

SIS step:
1: Xt ∼ gt(xt|xt−1); xt = (xt−1, Xt)

2: ut =
πt(xt)

πt−1(xt−1)gt(xt|xt−1)
3: wt = wt−1ut

Here, ut is an “incremental weight” and as long as xt−1 is properly weighted by wt−1
with respect to πt−1, xt is also properly weighted by wt with respect to πt. We can use the
auxiliary distributions in choosing a proposal distribution, e.g. (if possible):

gt(xt|xt−1) = πt(xt|xt−1) (9)

A remaining critical question is how to pick the auxiliary distributions πt(xt). In gen-
eral the choice is problem-dependent, but in nonlinear filtering scenarios πt(xt) is usually
chosen to be the “current” posterior distribution.

1In other words, ηπt(xt) = πt(xt)∫
πt(xt) dxt

= π(xt)

2

3 Sequential Monte Carlo

Just as in normal Monte Carlo estimation, we can generate m samples to do estimation.
The only difference is that the samples are generated sequentially, using m independent
SIS processes in parallel. Thus, at t = 1 we have partial samples {x(1)

1 , . . . , x(m)
1 } with

x(
1i) ∼ g1(x1), and weights w(i)

1 = 1/m. At time t = 2 we have {x(1)
2 , . . . , x(m)

2 } with x(i)
2

drawn according to g2(x2|x
(i)
1) and having weight:

w(i)
2 = w(i)

1
π2(x(i)

1)

g2(x2|x
(i)
1)π1(x1)

(10)

As the sampling process proceeds, if the weight w(i)
t becomes too small for some partial

sample, we can stop the generation of that sample to save computation. Then, we must
replace the sample. One option is to repeat the SIS procedure from the beginning for that
sample. From a computational standpoint, this is undesirable. Another more feasible op-
tion is to resample from among the currently available partial samples. We will discuss
resampling in more detail.

4 Nonlinear filtering

Sequential Monte Carlo can be particularly useful in the context of nonlinear filtering in the
state-space model. Here the problem is to estimate the state x from a sequence of observa-
tions or measurements~z. We have (probabilistic) models of the process and measurements:

xt ∼ gt(xt|xt−1, θ) (11)
zt ∼ ht(zt|xt, φ) (12)

where gt is the process model at time t with parameters θ, and ht is the measurement model
at time t with parameters φ. Our goal is the online estimation and prediction (“filtering”)
of xt when the zt arrive sequentially. (For this discussion we will assume the parameters θ
and φ are known, but they can be incorporated into the filtering process as well.)

Then the posterior πt(xt) at time t can be computed recursively as:

πt(xt) = P (xt|~zt) ∝
∫

gt(xt|xt−1)ht(zt|xt)πt−1(xt−1) dxt−1 (13)

This is the well-known Bayes filter equation. (Note that the ht term can be pulled out of the
integrand since it is independent of xt−1.)

4.1 Bootstrap/Particle filter

Bayes filtering can be done using sequential Monte Carlo methods with an approach known
as the bootstrap filter or particle filter:

Bootstrap filter:
1: for j = 1 . . . m do
2: x(∗j)

t+1 ∼ ft(xt+1|x
(j)
t)

3: w(j) ∝ ht(zt+1|x
(∗j)
t+1)

3

4: Resample with replacement from {x(∗1)
t+1 , . . . , x(∗m)

t+1 }with probability propor-

tional to the weights w(j); store the new samples in {x(1)
t+1, . . . , x(m)

t+1}

The approach is to first “predict” the evolution of the process, using the previous poste-
rior as the proposal distribution, and then weight and resample the partial samples accord-
ing to the likelihood of the most recent observation for each partial sample. The “current”
target distribution which we are trying to approximate can be seen to be:

πt(xt) ∝ ht(zt|xt) ft(xt|xt−1)πt−1(xt−1) (14)

but because the state-space model is Markovian, we only need to estimate πt(xt) instead
of the full joint distribution π(xt) to attain this approximation. This is essential for the
bootstrap filter to be applicable.

There are two major problems with the bootstrap filter, which we will address later:

• It does not use all currently available information in the SIS step since it does not
consider zt+1, the current measurement, when sampling from the process model.

• It resamples every time step, which can decrease efficiency significantly if the current
set of samples is already sufficient.

5 General SMC framework

We can think of sequential Monte Carlo as a probabilisitic dynamic system (PDS).

Definition 5.1. A probabilistic dynamic system is a sequence of PDFs πt(xt) indexed by
discrete times t = 0, 1, 2, . . . where xt can either increase in dimensionality with time
(xt ∈ S1, xt+1 ∈ S2, xt+1 ∈ S1 × S2); or stay of the same dimensionality (xt, xt+1 ∈ S1).

A PDS is really just a sequence of posterior distributions conditional on information “up
to time t.” The final PDF is constructed sequentially as new information is incorporated.
Thus, in a PDS, the “configuration space” of the system changes with time.

In the state-space model where πt(xt) = P (xt|~zt, x0) (the posterior at time t), we can
think of the estimation of xt as an evaluation of the Monte Carlo average of a random
variable under distribution πt.

5.1 Sampling distributions

Recall one of the problems with the bootstrap filter: it does not use the current measure-
ment in choosing a sampling distribution. The general problem of choosing a sampling
distribution can be solved in several ways. Frequently, we choose

gt(xt|xt−1) = πt(xt|xt−1) (15)

i.e., the sampling distribution is picked to be the posterior from the previous step. Another
alternative is to employ a “coarsening” strategy, where we group a sequence of consecutive
state variables (xbt+1, . . . , xb(t+1)) into a “mega”-state x′t, and then apply SIS to draw a block
of b partial samples at a time.

Yet another approach is to employ some look-ahead if “future” information is available.
The idea is to construct a sampling distribution that is as close to the future target density
as possible. For example, a two-step forward look-ahead yields:

gt(xt|xt−1) ∝
∫

πt+1(xt+1|xt) dxt+1 (16)

4

More generally, an s-step look-ahead gives:

gt(xt|xt−1) ∝ πt+s(xt|xt+1) (17)

=
∫

πt+s(xt+s, . . . , xt|xt−1) dxt+1 . . . dxt+s (18)

The look-ahead approach tries to make use of as much future information as possible.
If t + s = n, i.e. all future information is available, then gt becomes the ideal sampling
distribution (∏t gt = πn). Of course, the problem is that computing a forward-looking
distribution is hard as s increases, but for small horizons it can be an effective strategy.

6 Resampling strategies

A problem with sequential Monte Carlo methods is that the variance in the importance
weights w(j)

t increases with time. Thus after a while, there are a few partial samples with
large weights and many with small weights. We would like to have “good samples” and
not waste effort on “bad” ones. One approach is to discard bad samples and regenerate
replacements from the start of the process, but this is computationally infeasible. Another
more reasonable approach is to “resample” from among the current good samples. Several
strategies can be employed for doing resampling.

6.1 PERM

A simple approach, known as the prune-enriched Rosenbluth method (PERM), is as follows:

PERM:
1: Define time-dependent upper/lower weight cuttoffs Ct/ct

2: if w(j)
t > Ct then

3: Split x(j)
t into r copies each with weight w(j)

t /r
4: if w(j)

t ≤ ct then
5: Flip a fair coin
6: if coin is heads then
7: Keep x(j)

t and set w(j)
t = 2w(j)

t
8: else
9: Discard x(j)

t

It can be shown that PERM is unbiased as long as Ct and ct are specified in advance (i.e.,
not determined from the data). While this offers flexibility, it also significantly reduces the
usefulness of the approach.

6.2 Simple random resampling

An even simpler approach is to just resample with replacement according to the impor-
tance weights:

Simple random resampling:

1: Draw with replacement m times from {x(1)
t , . . . , x(m)

t } according to the w(j)
t s

2: For j = 1 . . . m set w(j)
t = 1

m ∑m
i=1 w(i)

t

This is the technique used in the vanilla bootstrap filter. It works reasonably well in practice
and because of its simplicity is the most widely employed resampling approach, but with
some more work we can do better.

5

6.3 Residual resampling

Rather than resampling randomly we can enforce that the number of copies retained of a
partial sample is (approximately) proportional to the weight of the sample. This technique
is known as residual resampling:

Residual resampling:

1: Let w(∗j)
t = w(j)

t / ∑i=1m w(i)
t

2: Retain k j = bmw(∗j)
t c copies of x(j)

t
3: Let mr = m − k1 − . . . − km

4: Obtain mr i.i.d. draws (with replacement) from {x(1)
t , . . . , x(m)

t } with proba-

bilities proportional to mw(∗j)
t − k j

5: For j = 1 . . . m set w(j)
t = 1

m ∑m
i=1 w(i)

t

It can be shown that residual resampling dominates simple random resampling in that it
has both smaller variance and computation time. Furthermore, it does not seem to have
disadvantages in any other aspects.

6.4 A generalized strategy

A generalization of simple random resampling that does not directly use the importance
weights but instead uses an “alternative” probability vector (a(1), . . . , a(m)) is as follows:

Generalized random resampling:
1: for j′ = 1 . . . m̃ do
2: Draw x̃(j′)

t i.i.d. from the x(j)
t s according to (a(1), . . . , a(m))

3: Suppose x̃(j′)
t = x(j)

t ; then set w̃(j′)
t = w(j)

t /a(j)

4: Return the x̃(j′)
t s and w̃(j′)

t s

Note that it is important that a(j) be monotone in w(j)
t , since our goal is to prune “bad”

samples and copy “good” ones.
Using different probabilities than the importance weights can offer some useful flexi-

bility. For example, the a(j)s can be chosen to balance the need for sample “focus” (giving
more presence to samples with high weights) with the need for diversity in the samples.
One way to do this is to assign a(j) = (w(j)

t)α where 0 < α ≤ 1 can vary according to, e.g.,
the variance in the importance weights. Choosing, e.g., α = 1/2 amplifies the weight of
seemingly poor samples slightly, giving them a “second chance.” Note though that the re-
sampling process does not reset the weights uniformly; thus, if a sample must still improve
when given a second chance in order to survive in the next round of resampling.

6.5 Resampling schedules

A remaining question is: when should we resample? While the bootstrap filter resamples
at every step, this can lead quickly to a lack of diversity in the samples. One approach
is to pick a deterministic schedule, i.e. resampling at times t0, 2t0, . . . where t0 is given in
advance. Another approach is to examine the effective sample size Ne f f and resample if it
falls below some threshold, e.g. m/2. Ne f f can be approximated as:

N̂e f f =
1

∑m
i=1(w(i)

t)2
(19)

6

