
CSCI-6971 Lecture Notes: Markov Chain Monte
Carlo methods∗

Kristopher R. Beevers
Department of Computer Science
Rensselaer Polytechnic Institute

beevek@cs.rpi.edu

April 5, 2006

Suppose we need to draw samples from some complicated joint PDF p(x1, x2, . . . , xn) =
p(x). We have described importance sampling and sequential importance sampling tech-
niques for drawing such samples. The basic idea of these approaches is to instead sample
from some other “proposal” distribution g(x) that approximates p(x) and weight the sam-
ples according to p(x)/g(x). However, this only works if g(x) is a good approximation
of p(x). Often it is hard to come up with such a proposal density, particularly for high
dimensional problems.

Markov Chain Monte Carlo (MCMC) methods use an alternative approach to instead gen-
erate samples from p(x) iteratively based on Markov chains. The basic high-level MCMC
algorithm for generating samples x1, . . . , xN is:

Algorithm 1 Basic MCMC

1: Draw initial state x0 from some initial distribution
2: for t = 0 to N do
3: Modify xt according to some proposal distribution to obtain a proposed sample x′t+1:

x′t+1 ∼ q(xt, x′) (1)

4: With some probability A(xt, x′t+1), accept x′t+1:

xt+1 =
{

x′t+1 with probability A(xt, x′t+1)
xt otherwise (2)

There are a number of variants of the basic MCMC algorithm. They differ mainly in the
form of the proposal distribution, the decomposition of the state x into components, and
the form of the acceptance probability.

It is important to note that the proposal distribution in MCMC need not be similar or
even related to p(x), unlike the proposal distributions of importance sampling techniques.

∗The primary sources for most of this material are: “Monte Carlo Strategies in Scientific Computing,” J.S. Liu,
Springer, 2001; “Probabilistic inference using Markov Chain Monte Carlo methods,” R. Neal, TR CRG-TR-93-1,
U. Toronto, 1993; “Sequential Monte Carlo methods for rigorous Bayesian modeling of Autonomous Compliant
Motion,” K. Gadeyne, PhD thesis, K.U. Leuven, 2005; and the author’s own notes.

1

1 Metropolis-Hastings

The “core” MCMC algorithm, in terms of which most variants can be described, is the
Metropolis-Hastings algorithm:

Algorithm 2 Metropolis-Hastings
1: Draw initial state x0 from some initial distribution
2: for t = 0 to N do
3: Sample x′t+1 ∼ q(xt, x′), where the proposal distribution q need not (but may) depend

on xt
4: Compute:

a(xt, x′t+1) =
p(x′t+1)
p(xt)

q(x′t+1, xt)
q(xt, x′t+1)

(3)

5: Draw u ∼ UNIFORM[0, 1]
6: if u ≤ min{1, a(xt, x′t+1)} then
7: xt+1 = x′t+1
8: else
9: xt+1 = xt

Metropolis-Hastings is applicable as long as for any two states x, x′ it is possible to
compute p(x′)/p(x) and q(x′, x)/q(x, x′). (Note that the latter is simply 1 for symmetric
proposal distributions.)

Asymptotically, Metropolis-Hastings samples are samples from p(x) (which we will
prove later). However, the samples are not independent because they are correlated through
the proposal distribution q(x, x′). This correlation can have effects on the running time of
Metropolis-Hastings required to allow the Markov chain to explore the entire state space.

It is also important to note that if a candidate state is rejected, the current state becomes
the new state and should be counted again in any time averages or similar computations.
This is in contrast to importance sampling where if a sample is discarded (e.g. during
resampling) it does not contribute to the computation at hand.

1.1 Decomposing the state

Because it can be hard to define a fully joint proposal distribution, Metropolis-Hastings
is often performed “component-wise,” i.e., we modify only a single component or block
of components xk of x at a time. Components may be selected for modification according
to some pre-specified random distribution (e.g. uniform over the components), but more
frequently they are modified in sequence:

x′1 ∼ q1(x, x1)
x′2 ∼ q2(x, x2)

· · ·
x′n ∼ qn(x, xn)

Often, each component will be of the same “type” and it is appropriate to use the same
proposal distribution for all components. In deciding how to decompose the state into
components, there are several factors for consideration:

• How does the decomposition affect the choice of proposal distribution (cf. above)?

2

• It is desireable to use a decomposition for which the ratio p(x′)/p(x) can be computed
more efficiently if x and x′ differ in only a single known component, as opposed to
differing arbitrarily.

• It is also desireable to choose a decomposition such that the components of the state
are nearly independent, which may speed exploration of the state space.

1.2 Choosing a proposal distribution

There are a number of obvious choices for the proposal distribution q(x, x′). For discrete
components, it is common to choose the uniform distribution over the state space. An
alternative is to use a distribution that is uniform over all values except the current one.

For continuous components, common choices are the Gaussian distribution (or mul-
tivariate Gaussian for compound components) centered on the current value; or alterna-
tively the Cauchy distribution (or multivariate Cauchy), which has heavier tails that allow
for occasional large jumps in the Markov chain. Both of these distributions are symmetric,
so computing the acceptance probability is easy. They also both lead to ergodic Markov
chains since there is a nonzero probability of moving to any state (see the discussion of
convergence in Section 1.6 for more details). Yet another alternative which can be shown to
maintain these properties is a uniform distribution over an interval centered at the current
value. All of these distributions require width parameters that can be set either using a
priori knowledge or via trial and error.

1.3 Burn-in period

Samples generated using Metropolis-Hastings are only asymptotically from p(x), in much
the same way as a Markov chain approaches the steady state or invariant distribution
asymptotically (again, see Section 1.6). This implies that some samples from the begin-
ning of the MCMC process should be discarded. The beginning of an MCMC process is thus
known as the burn-in period. The length m of the burn-in period depends on the time re-
quired to explore the state space (often referred to as the mixing time in MCMC literature).
Samples x1, . . . , xm generated by Metropolis-Hastings are discarded. This leads to the fol-
lowing general estimator:

E [f (x)] ≈ 1
T − m

T

∑
i=m+1

f (xi) (4)

where m is the length of the burn-in period and T is the stopping time, i.e., the total number
of samples to generate.

1.4 Stopping time

As we have noted, because of the correlation between samples, the Markov chain must be
run long enough to fully explore the state space. There are several heuristics for determin-
ing when to stop sampling:

• The stopping time strongly depends on the “convergence ratio”:

typical step size of Markov chain
representative length of state space

(5)

• The step size of the Markov chain depends upon the choice of proposal density, e.g.,
the step size is be proportional to var (q(x, x′)). Too large of a step size leads to many
rejections; too small of a step size leads to slow mixing.

3

• For efficient mixing the step size should be the same order of magnitude as the small-
est “length scale” of p(x), e.g., if p(x) is a Gaussian mixture, the standard deviation
of the lowest-variance Gaussian.

• When adding an MCMC step to a sequential Monte Carlo sampler (known as the
“Resample-Move” strategy or “roughening”), it is typical to use a Gaussian proposal
density with the current sample as the mean and the sample variance as the variance.

1.5 Sample independence

The correlation between samples affects the quality of MCMC results and the iterations
required before stopping. Reducing the correlation is thus desirable. There are several
strategies for generating more independent samples; two of the simplest are:

• Start and run several independent Markov chains in parallel

• Keep only every kth sample from the Markov chain

1.6 Convergence

As we have stated earlier, Metropolis-Hastings asymptotically generates samples from
p(x). To prove this, we rely on several ideas from our earlier discussion of Markov chains.

Definition 1.1. Given some initial distribution f (0)(x) for the Markov chain and a transition
kernel T(x, x′) = p(x′|x), the PDF for the chain at time t is:

f (t)(x′) =
∫

T(x, x′) f (t−1)(x) dx (6)

In the context of discrete-time Markov chains we have termed this the t-step transition prob-
ability.

Definition 1.2. Recall that a Markov chain is ergodic if all of its states are both aperiodic
and recurrent. (See the notes on discrete-time Markov chains for further discussion.) An
ergodic Markov chain is time reversible with invariant distribution f (x) if it satisfies the
detailed balance equation:

T(xa, xb) f (xb) = T(xb, xa) f (xa) (7)

or equivalently:

f (xb) =
∫

T(xb, xa) f (xa) dxa (8)

(See the earlier notes for a derivation.)

It is known that any ergodic Markov chain that satisfies the detailed balance equation
eventually converges to the steady state (or invariant) distribution of the chain, f (x), re-
gardless of f (0)(x).

Theorem 1.3. The Metropolis-Hastings algorithm asymptotically generates samples from p(x).

Proof: We prove the theorem by showing that the Markov chain described by Metropolis-
Hastings is ergodic and staisfies the detailed balance equation, and so has p(x) as its in-
variant distribution.

4

The Markov chain is ergodic as long as T(x, x′) 6= 0 for all x, x′ (i.e., as long as it is pos-
sible to reach every state from any other state). From the Metropolis-Hastings algorithm,
we have:

T(x, x′) = q(x, x′)a(x, x′) + I(x = x′)
(

1 −
∫

q(x′, x′′)a(x′, x′′) dx′′
)

(9)

Here, I corresponds to the indicator function (1 if the argument is true, 0 otherwise). The
transition kernel is composed of two terms. The first term represents the probability of
arriving in some state x′ 6= x and is nonzero as long as p(x) > 0 and q(x, x′) > 0 for
all x, x′. The second term corresponds to the probability of remaining in state x, where
1 −

∫
q(x′′, x′)a(x′′, x′) dx′′ encodes the probability of rejecting a move (by integrating over

all possible moves). Since the second term is also positive, there is a nonzero probability
of remaining in x. Thus, all possible states can be reached from any state x so the Markov
chain is ergodic, given suitable proposal and target densities.

We must also show that the detailed balance equation holds for the invariant distribu-
tion equal to the target distribution p(x). If x = x′ this is trivial. Otherwise, we have:

T(x, x′)p(x′) = T(x′, x)p(x) (10)
q(x, x′)a(x, x′)p(x′) = q(x′, x)a(x′, x)p(x) (11)

a(x, x′)
a(x′, x)

=
q(x′, x)p(x)
q(x, x′)p(x′)

(12)

and we see that the acceptance probability used by Metropolis-Hastings suffices.

2 The Gibbs sampler

A commonly encountered version of MCMC is the Gibbs sampler. The Gibbs sampler is es-
sentially a variation of Metropolis-Hastings in which each component xk ∈ x is replaced
in turn by sampling from its conditional distribution given the values of all the other com-
ponents. Typically the component-wise transitions are applied in sequence as with other
MCMC approaches:

x(t+1)
1 ∼ p(x1|x

(t)
2 , x(t)

3 , . . . , x(t)
n)

x(t+1)
2 ∼ p(x2|x

(t+1)
1 , x(t)

3 , . . . , x(t)
n)

· · ·
x(t+1)

i ∼ p(xi|x
(t+1)
1 , . . . , x(t+1)

i−1 , x(t)
i+1, . . . , x(t)

n)
· · ·

x(t+1)
n ∼ p(xn|x

(t+1)
1 , x(t+1)

2 , . . . , x(t+1)
n−1)

Note that the new value for xi−1 is used immediately in sampling xi. A reasonable alterna-
tive is to pick an xi to update at random from a pre-specified distribution.

Whether Gibbs sampling can be applied depends heavily on whether it is possible to
easily sample from the conditional distributions of the components. In the best case, the
conditional distribution has some parametric form (e.g. Gaussian) from which we know
how to sample. As with Metropolis-Hastings, it is desireable to group several state vari-
ables into a single component if a convenient way of generating from the multivariate
conditional distribution is available.

5

3 Other MCMC variants

There are many other variations of MCMC. A few of the more popular ones are:

• Metropolis sampling: developed prior to the more general Metropolis-Hastings al-
gorithm, the Metropolis sampler assumes a symmetric proposal distribution and uses
the acceptance probability a(x, x′) = min{1, p(x′)/p(x)}.

• Boltzman sampling: this algorithm uses the “Boltzman” acceptance function:

A(x, x′) =
p(x′)

p(x) + p(x′)
(13)

The basic idea is to “forget” which of x or x′ is the current state, and then select be-
tween them at random according to their relative probabilities. However, there are no
clear advantages (or disadvantages) of this approach with respect to the Metropolis-
Hastings technique.

• Independence sampling: the proposal distribution q(x, x′) may be independent of
the current state x. MCMC with such a proposal is known as independence sampling.
This approach only works well if q is a good approximation of p(x).

6

