
CSCI-6971 Lecture Notes: Graphical models and
Belief Propagation∗

Kristopher R. Beevers
Department of Computer Science
Rensselaer Polytechnic Institute

beevek@cs.rpi.edu

April 26, 2006

1 Graphical models

We can model the dependencies of random variables using a graph. In a graphical model,
nodes represent random variables and arcs represent conditional dependencies. (The lack
of an arc between two nodes represents a conditional independence assumption.)

We will focus on two types of graphical models: undirected models and directed models.

• Undirected models are commonly referred to as Markov random fields (MRFs). In
an MRF, two nodes A and B are conditionally independent given a third node, C,
if all paths between A and B go through (are separated by) C. Arcs in the graph are, as
one might expect, undirected. We introduce MRFs in more detail below.

• Directed models are usually referred to as Bayesian networks (“Bayes nets” or BNs for
short), or alternatively belief networks. Arcs in the graph are directed; one can think of
an arc as indicating “causality,” i.e., an arc from A to B indicates A “causes” B (but
not that B causes A). Associated with each arc is a conditional PDF, e.g., p(B|A).

Graphical models are convenient representations for many applications. We are partic-
ularly interested in inference on graphical models, i.e., computing marginal PDFs of certain
nodes.

1.1 Example: Bayes net

Figure 1 shows an example graphical model for a particular medical diagnosis problem1

The model is an interpretation of the following rules:

∗The primary sources for most of this material are: “Understanding Belief Propagation and its gener-
alizations,” J.S. Yedidia, W.T. Freeman, and Y. Weiss, TR-2001-22, Mutsubishi Electric Research Laborato-
ries, January 2002; “A brief introduction to graphical models and Bayesian networks,” K. Murphy, 1998,
http://www.cs.ubc.ca/˜murphyk/Bayes/bnintro.html ; and “Nonparametric Belief Propagation,” E.B.
Sudderth, A.T. Ihler, W.T. Freeman, and A.S. Willsky, TR P-2551, MIT Lab for Information and Decision Systems,
October, 2002.

1Borrowed from Yedidia et al., who in turn borrowed it from S.L. Lauritzen and D.J. Spiegelhalter, “Local com-
putations with probabilities on graphical structures and their application to expert systems (with discussion),” J.
Royal Stat. Soc. B, 50, 157–224, 1988.

1

A

T

S

L

BE

DX

Figure 1: The “Asia” Bayes net (Lauritzen and Spiegelhalter, 1988).

1. A recent trip to Asia A© increases the chance of contracting tuberculosis T©.

2. Smoking S© is a risk factor for both lung cancer L© and bronchitis B©.

3. The presence of either E© tuberculosis or lung cancer is detectable by an X-ray X©, but
the X-ray cannot distinguish between them.

4. Dyspnoea D© (shortness of breath) may be caused by either E© tuberculosis or lung
cancer, or also by bronchitis B©.

In the graphical representation, each node i represents a random variable or hidden node xi
with, in this case, a discrete number of possible states. Associated with each arc in the
model is a conditional probability density (in this case a PMF), e.g., p(xL|xS), the probability
of obtaining lung cancer given that the subject smokes. In the terminology of Bayes nets, S
is the parent of L; a node may have multiple parents, e.g., D, which we can condition on E
and B, i.e., p(xD|xE, xB). Nodes at the “edge” of the graph have no parents, e.g., A or S.

In general, a Bayes net is most useful if it is sparse — most nodes have no arcs between
them, i.e., they are not statistically dependent.

The joint PDF of all the variables in a Bayes net can be computed as a product of the
marginals. In the example:

p(x) = p(xA, xS, xT , xL, xB, xE, xX , xD) =
p(xA)p(xS)p(xT |xA)p(xL|xS)p(xB|xS)p(xE|xL, xT)p(xD|xB, xE)p(xX |xE) (1)

Definition 1.1. Generalizing, we say: a directed acyclic graph of N nodes defines a Bayes
net with N random variables xi, i = 1 . . . N, that encodes the joint PDF:

p(x) =
N

∏
i=1

p(xi|par(xi)) (2)

where par(xi) denotes the parents of xi.

Inference in a Bayes net, which is equivalent to marginalization, can be done (in the
discrete case) with:

p(xN) = ∑
x1

∑
x2

. . . ∑
xN−1

p(xN |x1, x2, . . . , xN−1) (3)

2

ψi j(xi, x j)

φi(xi, yi)

yi

xi

Figure 2: Square lattice pairwise MRF.

Frequently the notation b(xN) = p(xN) is used instead to denote the belief about xN . Note
that the number of terms in the summation grows exponentially in the number of hidden
nodes, so doing inference naı̈vely is intractable.

1.2 Example: pairwise Markov random field

Consider a computer vision application in which we are given a 1000× 1000 pixel grayscale
image. We wish to infer quantities xi for each input (pixel) yi, e.g., distance to the object in
the scene, high-resolution details missing from the image, etc. More generally, we observe yi
and wish to infer xi.

We assume there is some statistical depenency between xi and yi. The evidence for xi
given by yi is φi(xi, yi).

We also assume there is some underlying structure in the xi’s, e.g., xi should be “com-
patible” with nearby xj’s. This is expressed by a compatibility function ψij(xi, xj), which, in
a computer vision application, say, only connects nearby pixels.

Figure 2 depicts a square lattice pairwise MRF like that which might arise in a computer
vision application.

The MRF model is undirected, which is why we use undirected compatibility func-
tions ψij(xi, xj) and evidence functions φi(xi, yi) instead of “directed” conditional PDFs p(xi|xj)
and p(xi|yi), respectively.

The joint PDF of the inputs yi and the quantities xi (e.g., an image and the underlying
scene) can be expressed as:

p(x, y) = η ∏
(ij)

ψij(xi, xj) ∏
i

φi(xi, yi) (4)

where (ij) is over neighbors in the graphical model, e.g., over nearest neighbors on the
square lattice for a computer vision application.

Inference in a pairwise MRF thus involves the computation of b(xi) for all i, so direct
computation takes exponential time in the number of nodes (just as with BNs) — and in
applications like computer vision, there are typically very many nodes. We thus need an
approximate solution.

3

1 2

3

4

m
t
23
(x3)

mt
12(x2)

mt
21(x1)

m
t
32(

x2)

m t
24 (x4)

m t
42 (x2)

Figure 3: Message propagation in BP.

2 Belief propagation

Belief propagation (BP) is a method for inference on graphical models.2 We consider the
observed (unhidden) variables to be fixed, so we write φi(xi) as shorthand for φi(xi, yi).
Thus, our goal is to compute:

p(x) = η ∏
(ij)

ψij(xi, xj) ∏
i

φi(xi) (5)

Definition 2.1. The main idea of belief propagation is to introduce messages between hid-
den nodes in the model. The message mij(xj) is a message from hidden node i to hidden
node j about what state i “thinks” j should be in. A message is a likelihood function over
the state space of xj:

mij(xj) ∝ p(yi = yi|xj) (6)

where yi is the predicted input given xj. Figure 3 depicts the messages in a simple undi-
rected network.

Belief propagation is an iterative algorithm. At each time t, each node sends messages
to its neighbors. (We’ll add a time index to messages: mt

ij(xj).) Incoming messages are used
to compute the belief at the node. The process is iterated until convergence. The full joint
posterior can then be obtained from the product of marginals, or individual marginals can
be used in an inference problem.

Belief The belief at node i is proportional to the product of local evidence φi(xi) and all the
incoming messages:

bt
i (xi) = ηφi(xi) ∏

j∈N(i)
mt

ji(xi) (7)

where N(i) denotes the neighbors of i in the graphical model.

2We’ll focus on pairwise MRFs; it is easy to convert BNs and other graphical models into MRFs (and vice versa)
— see Yedidia et al.

4

Message update rule Messages for the next iteration are computed as:

mt+1
ij (xj) ← η

∫
xi

φi(xi)ψij(xi, xj) ∏
k∈N(i)\j

mt
ki(xi) dxi (8)

If the MRF is acyclic (there are no loops), these two rules are exact. We will not prove this
but will give an example to show the intuition. Consider the MRF in Figure 3. Here, b1(xt)
as computed by one iteration of BP is exactly equal to the marginal PDF of xt:

b1(xt) = ηφ1(x1)m21(x1) (9)

= ηφ1(x1)
∫

x2

ψ12(x1, x2)φ2(x2)m32(x2)m42(x2) dx2 (10)

= ηφ1(x1)
∫

x2

ψ12(x1, x2)φ2(x2)∫
x3

ψ23(x2, x3)φ3(x3)
∫

x4

ψ24(x2, x4)φ4(x4) dx4 dx3 dx2 (11)

= η

∫
x2

∫
x3

∫
x4

p(x) (12)

= p(x1) (13)

where Equation 12 follows from the definition of the joint PDF in Equation 4.
An implementation of BP would start with nodes at the edge of the graph and propa-

gate messages, waiting at each node until all messages from incoming edges are available.
Exact inference on an acyclic graph thus takes time proportional to the number of edges in
the graph, far less than the exponential time required by a naı̈ve computation. The reason
is that BP breaks down the “global” computation of marginals into small “local” computa-
tions.

2.1 Loopy belief propagation

In practice many graphical models have cycles, as in the graph of Figure 2. Loopy belief
propagation can be performed on such graphs — with some slight modification. Note
that the basic BP algorithm will not work because nodes wait to receive messages from all
parents before sending theirs. Instead of waiting, suppose we instead pick some initial
messages (at random) and compute local message updates using those. The hope is that
eventually the message updates converge and the beliefs approximate the real marginals.
As noted by Pearl:3

If we ignore the existence of loops and permit the nodes to continue communi-
cating with each other as if the network were singly connected, messages may
circulate indefinitely around these loops, and the process may not converge to
a stable equilibrium.

Specifically, statistical dependencies between BP messages are not accounted for in loopy
BP, so limt→∞ bt

i (xi) 6= p(xi). In practice, however, loopy BP often works very well even in
loopy graphs. Yedida et al. provide some theoretical insight into why — see their paper
for details.

3J. Pearl, “Probabilistic reasoning in intelligent systems: networks of plausible inference,” Morgan Kaufmann,
1988.

5

2.2 Nonparametric belief propagation

Note that computing the message update (8) is potentially expensive (because of the inte-
gration). Often, linear Gaussian models are assumed, and the integral can be easily com-
puted. An alternative is to represent the messages nonparametrically, e.g., with samples,
or as a mixture of Gaussians:

mij(xj) =
M

∑
k=1

wk
jN (xj; xi

j, Λj) (14)

where wk
j is the weight of the kth Gaussian kernel, xk

j is the kernel mean, and Λj is the

“bandwidth” or smoothing parameter, common to all the Gaussians.4

The message update (8) can be decomposed into two stages:

1. The computation of the message products: φi(xi) ∏k∈N(i)\j mt
ki(xi)

2. The propagation of messages, combining the result of computing the message prod-
ucts with the compatibility potential ψij(xi, xj) and integrating to produce likelihoods
for xj.

The idea of nonparametric BP is to stochastically approximate these two stages.

2.2.1 Message products

Suppose φi(xi) and mt
ki(xi) are all represented by mixtures of weighted Gaussians. The

product of d Gaussians is Gaussian, so the product of d Gaussian mixtures each with
M components is a Gaussian mixture with Md components. Every product mixture com-
ponent is associated with d “labels” {li}d

i=1, where li identifies a kernel in the ith mixture.
The weight w of a product mixture component N (x; µ, Λ) is then:

w ∝
∏d

i=1 wiN (x; µi, Λi)
N (x; µ, Λ)

(15)

where:
N(x; µ, Λ) ∝ ∏

{li}d
j=1

N (x; µj, Λj) (16)

with the product being over the labels associated with the product mixture component.
Nonparametric BP samples M times from this product of mixtures to obtain a new M-

component mixture, with component means as the samples, and with some fixed smooth-
ing parameter. Explicit sampling from the joint distribution over all d labels requires calcu-
lating the Md component weights and is intractable. However, the conditional distribution
of the lith label given {lj}j 6=i is simpler (a single mixture of M Gaussians) and we can sam-
ple from it in O(M) operations.

Since we can sample from the conditional distributions, we can use Gibbs sampling
(see the earlier lecture on MCMC) to draw from the full product mixture. Assuming burn-
in time is independent of d and M, we can draw M samples from the product mixture in
O(dM2) operations.

4This is the formulation used by Sudderth et al., although it certainly seems reasonable to, say, vary the
smoothing parameter per sample. Of course, that complicates the approximation.

6

2.2.2 Message propagation

To propagate messages, can do Monte Carlo integration. We incorporate
∫

xi
ψij(xi, xj) dxi

— the marginal influence of ψij on xj — into the Gibbs sampler for the message product.
Thus, the Gibbs sampler produces samples xk

j ∼ p(xj).
The samples are propagated to xi by sampling:

xk
i ∼ ηψij(xi, xk

j) (17)

for each particle xk
j produced by the Gibbs sampler. (Equation 17 represents the conditional

relationship between xi and xj.) The xk
i s are i.i.d. samples from mt+1

ij (xj) — these are sent,
along with a bandwidth to represent a Gaussian mixture, as the message.

7

