
Mapping With Limited Sensing Capabilities

Kris Beevers
Rensselaer Polytechnic Institute
Algorithmic Robotics Laboratory

beevek@cs.rpi.edu

October 15, 2003



Problem

• Need a map that is useful for navigation, and is consistent

• Our robots are limited in their sensing capabilities (and maybe their
computational abilities as well), so:

– Occupancy grid maps are not feasible!
– Instead we will create a topological map (or a variation thereof)
– This map can be navigated with a small set of simple predefined behaviors

that are independent of sensing ability

1



What is a Map?

• We want to make maps that are useful to robots for navigation

• We do not require our maps to be useful to humans in any way!

• In particular, we would like a representation of the environment, and places
within it, that:

– Is easily searched for shortest paths
– Can represent paths as a sequence of simple behaviors that will get the

robot from one place to another
– Is efficient to create, even with limited sensing ability
– Is memory-efficient

2



Assumptions (for now)

• Approach: find something that works with a number of simplifying
assumptions, and then work on relaxing these

• Environment: enclosed, rectilinear, static,“smooth”

• Sensors/actuators:

– Range sensors: known range
– All sensors/actuators: no error (this is the biggest assumption by far!)

• Available behaviors:

1. Straight-line wall-follow (with an optional distance argument)
2. “Guarded move” (drive until we encounter a wall)
3. Turn 90 degrees (left or right)

3



Three-phase Algorithm

• Algorithm phases:

• Phase 1: Create initial, very simple map, using only our available behaviors

• Phase 2: Refine the map to make it more useful for navigation

• Phase 3: Navigate using the refined map (hopefully just with graph search
that outputs a sequence of behaviors to execute)

4



Example World

���������
���������
���������
���������

���������
���������
���������
���������

5



Phase 1: Create Initial Map

1. Idea: use“discontinuities” in walls that we are following as features in a
topological map

2. Discontinuity : a location at which the robot must turn to continue following
the wall (i.e. corners)

3. Two types in a rectilinear world: exterior and interior corners, at which the
robot must turn 90 degrees

6



Phase 1: Create Initial Map (cont.)

• Algorithm for creating the initial map:

1. Initiate“guarded move”behavior until we encounter a wall; add a node to
our map labeled with the configuration of the robot (e.g. its (x, y, θ)),
and call this the start node

2. Repeat: follow the wall (in either direction) until a discontinuity is
encountered; when one is found:

(a) Add a new node to our map, labeled with the configuration of the robot
at the time it detected the discontinuity

(b) Connect the new node to the previously encountered node with an
undirected edge

3. Stop when we return to the start node

• Call this initial map GW (since we created it by wall-following)

7



Assumptions Make This Easy

• Enclosed environment: algorithm will terminate

• Static environment: we don’t have to worry about, for example,
opening/closing doors

• Known sensor range: we know that we’ve“seen”a specific amount of area
around the robot’s actual path

• No sensor/actuator error: we can reliably detect discontinuities, and we can
reliably detect our location in the map (so, for example, we know when we
return to the start node)

• Later, we’ll have to overcome most of these issues!

8



Example World After Phase 1

���������
���������
���������
���������

���������
���������
���������
���������

9



Phase 2: Refinement

• The map we have now is already useful for navigation

• Any wall-following robot can find its way between two places that have been
seen by the sensors during the map-making phase

• But, the path we take between the two places might be arbitrarily long, even
if the places are very close!

• We’d like to“enhance” the map with, for example, knowledge that we can
cross a hallway safely, and not lose ourselves in the map

10



Phase 2: Refinement (cont.)

• Idea: use the fact that we know the range of the robot’s sensors in order to
infer the existence of a path between two parts of the map

• If two“path segments”of the map (edges of GW ) can“see”each other inside
the area known after the initial mapping phase, we can infer that a path
exists between them

• Use the rectilinear assumption, along with our turn and move-to-wall
behaviors

• Show that, for some pairs of path segments, a specific sequence of actions
guarantees that we can move from one edge to the other

11



What the Robot Knows (partially highlighted)

���������
���������
���������
���������

���������
���������
���������
���������

12



Phase 2: Refinement (cont.)

• Simple algorithm:

1. Create a new graph GP , where each node represents an edge (path
segment) from the original map GW

2. For all ordered pairs of path segments (p1, p2) in GP such that p1 and p2

are geometrically parallel, and such that, when p1 is projected onto the
line on which p2 lies, p1 ⊆ p2: add a directed edge from p1 to p2 if and
only if a sweep of p1 across the known free space, towards p2, remains
enclosed in the free space until it reaches p2

• This results in GP containing a directed edge from a path segment p1 to
another path segment, p2, only if, at any point in p1, a robot can:

1. Turn 90 degrees away from the wall it is following
2. Initiate its move-to-wall behavior
3. Know that it lands on p2 when it encounters a wall

13



GP for the Example World

���������
���������
���������

���������
���������
���������

14



Phase 2: Refinement—Further Considerations

• How do we combine GW and GP into a representation that is useful for
navigation?

– One possibility: split p2 into multiple segments; add new nodes to
correspond to the ends of p1, and connect the ends of p1 to these new
nodes

– Or: find some other way of representing the fact that we can get from any
point in p1 to some point in p2 (though with perfect sensing we know this
point exactly)

– Or: maybe we don’t need to combine GW and GP?

• Are there better ways to represent our knowledge of the free space? Certainly
we can do better given more complicated behaviors (e.g. move diagonally)

• We’re still working on this!

15



Phase 3: Navigation

• Clearly this depends on what we finally end up with after the refinement
stage

• Ideally, given start and goal locations noted during the mapping stage, we
would like to:

1. Connect the start node to some node (or path segment?) in our map; we
might pick the node to move to based on some sort of planning, or maybe
we just pick the closest node

2. Connect the goal node to some node in our map with an undirected edge
3. Use a graph search to find the shortest distance path through the graph

from start to goal
4. Traverse this path, which should be possible using only the set of simple

behaviors we assumed earlier

16



Phase 3: Navigation (cont.)

• Note that we don’t really need metric information for any part of the
navigation except the shortest path search (assuming we know our initial
location)!

• So, traversing the path depends entirely on our ability to detect
discontinuities

• This is nice because. . .

17



Introducing Error

• As long as we can reliably detect discontinuities, it doesn’t matter what our
exact metric location is while we are traversing a path

• So, at least for navigation, we just need to worry about error in detecting
discontinuities

• What about during the map-making phase? Metric error (in measuring
distance between discontinuities) will affect:

– Knowing when we’ve returned to the start location
– Shortest paths (we won’t get lost, but our paths might be less optimal)
– Refinement: we might make mistakes when we decide which path

segments can“see”which other path segments

18



Refinement—Dealing With Distance Error

• Suppose we have some model of the odometry error (see below)

• We might be able to restrict the places on p1 from which we leave, and still
guarantee that we end up on p2:

19



The“Smooth World”Assumption

• What about worlds like the one below?

• Much more likely to see error in detection of discontinuities

20



Dynamic Environment

• What happens when discontinuities change?

– Someone moves a big box
– Someone (gasp!) opens a door, presenting us with a whole new region

• We might try to recognize that discontinuities might be dynamic when we
detect them. (But how? We’d probably be buried in special cases)

• In general, this problem seems hard (i.e. we haven’t thought very much
about it yet)

21



What’s Next?

• Finalize the refinement phase

• Tackle some of our assumptions:

– Add sensor/odometry/motion error
– Generalize to polygonal environments
– Think about dynamic environments

• Literature review

• Develop more complicated (/useful?) examples

• Implement on some robots with limited sensing capabilities, and try it out!

22


