
Single-robot Topological Mapping and Map
Merging for Sensing-impaired Robots

Kris Beevers
Rensselaer Polytechnic Institute
Algorithmic Robotics Laboratory

beevek@cs.rpi.edu

February 13, 2003



Motivation

• Team of cheap, “disposable” robots

– only a few short-range sensors (e.g. side, front, 45o)
– error in movement, odometry measurements

• Objective: create a map that is useful for navigation

• Applications: search & rescue, reconnaissance, etc.

• Video

• This talk:

– Single-robot topological mapping algorithm
– Topological map merging algorithm (briefly)
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Single-robot mapping

• Problem: release a single robot somewhere in an enclosed, static
environment

• For now, assume the environment is polygonal in nature (possibly
with “holes”/“islands”)

• Approach: create a topological map

– simple graph representation: good for storage, communication
– captures the connectivity of the environment
– essentially, encodes only information that is necessary for

navigation
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Mapping strategy

• Three-phase mapping algorithm:

1. Create a “basic map” by following walls
2. Add “refinements” to the basic map to improve its usefulness in

navigation
3. Use the map for navigation

• Hardest problem: “closing the loop” when creating the basic map

• Another hard problem: adding refinements that require further
exploration
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Features

• Because of sensing limitations, environmental features that we use
to create the map must be easy to detect

• Use discontinuities in walls of environment (i.e. corners) as features
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• Robot follows walls at offset r0; discontinuities that fall outside
[r−, r+] are well-defined features

– r > r+: exterior corner
– r < r−: interior corner
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Basic mapping

1. Release the robot

2. Robot moves forward until it encounters some wall

3. Follow the wall at r0 until a well-defined feature is encountered: this
feature is v0, the start node

4. Turn and follow the next wall (incident to v0) until another feature is
found

5. Repeat until we return to v0 (this must happen if the environment is
enclosed — but how do we recognize it?)
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Closing the loop

• Need to recognize when we’ve returned to v0

• Take a “hypothesis”-based approach (i.e., hypothesize that we have
returned to v0, and attempt to prove or disprove the hypothesis);
similar to approaches of Kuipers [5], Tomatis [7], Choset [1]

• When do we make such a hypothesis?

– Node must be same type as v0 (interior/exterior)
– If we have some error model for the robot, and some confidence

bound threshold, this bound must overlap v0

– If we have information about the “orientation” of nodes,
orientations must match
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Closing the loop (cont.)
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Closing the loop (cont.)

• With enough error or sufficiently difficult worlds, we sometimes
generate incorrect hypotheses
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Closing the loop (cont.)

• Approaches to choosing the correct hypothesis:

– Continue traversing walls, matching nodes structurally and
geometrically; if subsequent pairs don’t match, the hypothesis is
incorrect (problem: how far is far enough?)

– Assume the first hypothesis is correct; disprove it with later
exploration and navigation if it isn’t

• For now, we are using the second method; major issues:

– in some cases, recognizing that the hypothesis is incorrect seems
to require that we traverse the basic map past the hypothesized
match (as with the first approach)

– if we discover that the hypothesis is wrong, how do we “revert” to
a valid map?
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Embedding

• After we’ve closed the loop, we need to make our map embeddable
in the plane

• Approach: treat each edge in the map as a spring

• Solve for edge lengths that allow map to be embedded

• Literature: Duckett et al. [2], Lu & Milios [6], Golfarelli et al. [3]
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Refinements

• Basic map is useful — we can get anywhere we’ve explored — but:

– we need to circumnavigate even to cross a hallway!
– there may be “islands” we don’t know about

• Refinement idea: try to add more paths between nodes in the map

• Biggest problem: we can’t follow these paths by wall-following

– Turn to some angle away from a wall
– “Foray” until we encounter a new wall

• To keep from getting lost, we need to make guarantees about which
wall we “land” on, despite rotational and translational uncertainties
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Refinements (cont.)
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Refinements (cont.)

• Passive refinements:

– pass entirely through “known space” already swept out by the
robot’s sensors during basic mapping

– require no further exploration

• “Exploration targets”:

– refinements that pass through unknown space
– need to actually explore these refinements — they may run into

an island, for example
– only allow active refinements for which, if we run into something,

we can “safely” get back to a known location in the map
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Refinements (cont.)

• After basic mapping and closing the loop, generate a list of all
potential refinements

• Use traveling-salesman type planning to determine the sequence of
exploration targets to visit

• When exploring, if we run into an island before getting to target wall:

– we may have some “leeway” to explore (using basic mapping
methods), depending on error model/accumulation

– must not allow error to accumulate to the extent that we can’t
ensure return to a known location

• If we don’t encounter our target wall at all (we go far beyond its
estimated location): this disproves our loop-closing hypothesis!
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Refinements (cont.)
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Navigation

• If our map remains consistent after refinements, we enter the
navigation phase

• Use the map to navigate between known locations

• Essentially just shortest-path graph search

– note that edges between nodes have associated behaviors
(wall-follow, or turn & move-to-wall, etc.)

• In some cases, a refinement (even if we’ve previously explored it)
might fail

– should be ok — we can get back to a known location
– discard the refinement if this happens
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Another enhancement: “portals”

• Detected when:
1. wall-following sensor detects an exterior corner
2. opposite sensor detects a wall

• We can use portals to divide the world into “subregions” (i.e. treat a
portal as a “virtual wall”)

• Explore each subregion using basic mapping and refinement
methods, and connect the subregions using portals between them

• Main advantage: smaller loops to close
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Results/Future work

• Simulation: mostly implemented, works as expected for the most
part

– easy to come up with situations where initial hypothesis is
incorrect, as long as robot experiences enough error

– need to work on detecting incorrect hypotheses, etc.

• Real robots:

– previously implemented basic mapping on Magellan
– main issue: wall-following methods (straight-line wall-following vs.

“normal” wall-following)
– working on implementing with new little robots

• Need to resolve hypothesis issues, fine-tune refinement exploration
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Topological map merging (quickly)

• Problem: given consistent topological maps created by two robots
with different reference frames, find correspondences between them
and merge them into a single map

• With no metric information: pure subgraph isomorphism

• We assume some metric information is available (edge lengths), but
it is noisy

• Approach:

1. “grow” match “hypotheses” using only structural information
2. estimate geometric transformations for these hypotheses
3. cluster the hypotheses into consistent groups based on their

locations in transformation space
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Growing matches

• Assumption: by visiting a vertex in the map, the robot knows its
degree

• Start with initial pairing of “compatible” vertices (one from each map)

• Exactly-known vertex attributes (such as degree) must match
exactly; inexactly-known attributes must be compared with a
similarity function

• “Grow” by testing corresponding pairs of edges and neighboring
vertices leaving from the initial pairing

– if compatible, add to the match
– if not, reject the entire match
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Estimating geometric transformations

• First, we must embed the vertices of the maps in the plane (just like
with single-robot mapping)

• Use least squares estimation to find transform implied by a
hypothesis

• Closed-form SVD-based method (from image registration) lets us do
this in one step
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Clustering of hypotheses

• Cluster based on closeness of transformations

• A cluster cannot have multiple correspondences for a vertex in
either map (this is inconsistent)

• After clustering, order clusters by “quality”

– number of vertex correspondences
– total squared error under cluster transform
– number and sizes of hypotheses in the cluster

• Always a tradeoff between size and quality (a single-node match is
perfect!)
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Results

• Algorithm works well and is fast (even for large maps with small
overlap)

Map A

Map B
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