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Abstract— In order to create consistent maps of unknown
environments, a robot must be able to recognize when it
has returned to a previously visited place. In this paper, we
introduce an evidential approach to the loop-closing problem
for topological maps, based on the Dempster-Shafer theory
of evidence. In our approach, the robot makes a hypothesis
whenever it may have revisited a place. It then attempts to
verify hypotheses by continuing to traverse the environment,
gathering evidence that supports (or refutes) the hypotheses.
We describe methods for managing belief about multiple loop-
closing hypotheses, and for determining a belief assignment
given a piece of evidence. We also discuss methods for
reducing the false alarm rate of our loop-closing algorithm,
and provide simulated and real-world experimental results
that verify the effectiveness of our approach.

I. INTRODUCTION

An important problem in mobile robotics is for an
individual robot to enter an unknown environment and
create a map that can subsequently be used for navigation.
One approach to this problem is to create topological
maps, generally represented as graphs where the nodes
correspond to “places” in the environment and the edges
are paths between two places.

The fundamental challenge in creating topological maps
is for the robot to recognize when it has returned to a place
it has previously visited. This problem is known as closing
the loop since the robot usually returns to a previously
visited place via a different path. Without this capability, a
robot will have several nodes in its map that represent the
same place, making the map inconsistent.

With sufficiently rich sensing, places can be recognized
by recording a unique “sensing signature” [7] for each
place. Our focus, however, has been on robots with much
more limited sensing information. We envision applications
where, for example, an inexpensive (and therefore poten-
tially disposable) robot is sent into a contaminated building
to perform hazard assessment. In order to make this robot
inexpensive, a limited array of sensors will be available.

In this paper, we describe a new method for closing
loops in topological maps that relies only upon odometry
measurements. We have applied this method to a small
robot that uses wall-following and other behaviors to
travel through the environment. The nodes in our map are
interior and exterior corners of walls; the edges represent
a sequence of behaviors to move the robot from one node
to another. The robot measures the distance between nodes
(with error) using odometry, and the single “feature” of a
node is whether it is an exterior or interior corner.

Our method maintains an estimate of the robot’s position
with respect to its starting node. Using a model of odometry
error, we compute confidence bounds on this estimate.
When these bounds encompass a previously-visited node,
the robot makes a hypothesis that it has closed the loop.
The robot then continues its forward traversal of the loop,
looking for evidence to confirm or reject a hypothesis. A
hypothesis may be rejected by a “structural mismatch,”
e.g., an interior corner encountered where there should be
an exterior corner.

Otherwise, the length of each edge traversed is com-
pared with the previous measurement of the corresponding
edge under the hypothesis. The degree to which a new
measurement matches the old measurements is interpreted
as evidence for or against a loop-closing hypothesis. We
use Dempster-Shafer theory [8] to combine evidence and
maintain the current belief in each of the loop-closing
hypotheses. When one hypothesis has garnered enough
support, that hypothesis is accepted as correct.

One key element of our approach is a new method
for modifying a Dempster-Shafer frame of discernment to
accommodate discovery of new hypotheses. Another aspect
is a belief function we have devised to compute a basic
probability assignment that reflects the evidence a path-
length measurement provides over all sets of hypotheses.

In the remainder of this section, we review related
work and our assumptions. Then, after a brief overview
of Dempster-Shafer theory in Section II, we describe the
details of our method in Section III. Simulated and real-
world experiments are presented in Section IV.

In the course of this work, we have found that en-
vironments with structural and metric self-similarity —
particularly environments that “spiral” inward or outward
and environments with repeating substructure — are the
most difficult to map correctly. In these worlds, incorrect
loop-closing hypotheses are often formed. This leads to
“false alarms” — incorrect hypotheses being confirmed as
correct because of the self-similarity. In Section V, we
discuss methods for limiting the rate of loop-closing false
alarms by measuring the self-similarity of an environment
and responding accordingly.

A. Related work

The loop-closing problem has been studied in conjunc-
tion with mapping for well over two decades; however, we
believe this work is the first to place this problem in a
decision theoretic framework.



A simple (but undesirable) approach to closing the loop
is to “drop a pebble.” Upon returning to the pebble, the
robot knows that it has returned to the same location.
Bender et al. [2] describe algorithms that use a pebble
in order to explore graphs. Another approach is to use
sensors that can record a distinctive “sensing signature”
for each place. Kuipers and Beeson [6] use supervised
learning to recognize the sensing signatures at nodes in
their topological maps.

Kuipers’ “rehearsal procedure” [7] encapsulates the gen-
eral idea of using the map topology to make a loop-
closing decision. Choset and Nagatani [3], whose topolog-
ical maps are based on the generalized Voronoi diagram
of the environment, describe an approach where structural
characteristics of the map (e.g., the degree of vertices and
the order of incident edges) are the primary criteria for
verification. Tomatis et al. [10] embed this comparison in
a POMDP that should show a single peak when the loop
has been closed.

Our approach, based on accumulating evidence about
loop-closing hypotheses, is related to that of Cox and
Leonard [4], who maintain multiple hypotheses about the
state of a dynamic world. They assign and update the
probability of each hypothesis using a Bayesian framework.
The main advantage of a Dempster-Shafer based method is
the ability to represent “ignorance” about which hypothesis
is supported by a piece of evidence — particularly useful
when, for example, evidence appears to support more than
one hypothesis.

This work focuses on one specific aspect of the single-
robot mapping problem (loop closing). We omit many of
the details of the rest of our mapping approach. A complete
discussion of the remainder of our mapping algorithm
is available in our previous publications [1], [5], which
include details about behaviors and our other extensions to
topological maps (mostly for dealing with open spaces).

B. Assumptions

We consider a robot with known error models for move-
ment, odometry and sensing. We assume errors are random
and zero-mean and that we can merge and compound
measurements and compute confidence bounds for a given
confidence level. For this work, we assume that the robot
perfectly detects features (i.e., there are no structural errors
in the robot’s map — only metric errors). Additionally, we
assume an enclosed, static environment.

II. DEMPSTER-SHAFER THEORY

Our loop-closing algorithm makes extensive use of the
Dempster-Shafer theory of evidence [8]. As such, a brief
overview of the central concepts of Dempster-Shafer theory
is warranted.

Dempster-Shafer theory provides a framework for the
mathematical representation of uncertainty that is based on
modeling “belief” about a set of possibilities. Dempster-
Shafer differs from traditional probability theory in several
key ways:

• The allocation of belief mass to sets of mutually ex-
clusive possibilities — not just individual possibilities
— is allowed.

• For this reason, Dempster-Shafer theory can represent
“ignorance,” as belief mass assigned to a set of
multiple possibilities (reflecting lack of knowledge
about which specific possibility a piece of evidence
supports).

• Because of its ability to represent ignorance,
Dempster-Shafer theory requires no a priori knowl-
edge about the world; in the presence of no knowl-
edge, all belief mass is assigned to ignorance.

In Dempster-Shafer theory, the set of mutually exclusive
possibilities (or events), called the frame of discernment,
is denoted Θ. In our loop-closing problem, the elements in
the frame are hypotheses about loops in the environment.
In Dempster-Shafer theory, probability is assigned over the
power set of Θ, 2Θ — rather than over Θ itself, as it would
be in traditional probability theory. A basic probability
assignment (b.p.a.) m : 2Θ → [0, 1] is a function for which
m(∅) = 0 and

∑
A⊆Θ m(A) = 1. The quantity m(A) is

the basic probability assigned to A. This is the measure of
belief committed exactly to A — but not the total belief
committed to A. The total belief in A is the sum of all
belief committed exactly to A and its subsets, i.e.

Bel (A) =
∑
B⊆A

m(B) (1)

The plausibility of A is defined as

Pl (A) = 1− Bel
(
A

)
(2)

Plausibility is the probability mass that does not sup-
port A’s negation.

It is useful to combine two b.p.a.’s into a single b.p.a.
that reflects our belief given all of the evidence represented
in each. Dempster-Shafer theory provides a mechanism for
this, called Dempster’s rule of combination. We combine
two b.p.a.’s m1 and m2 with:

m1⊕m2(A) =

∑
B,C∈2Θ:B∩C=A m1(B)m2(C)

1−
∑

B,C∈2Θ:B∩C=∅ m1(B)m2(C)
(3)

(unless A = ∅, in which case m1 ⊕ m2(∅) = 0).
The denominator in Dempster’s rule is a normalization
coefficient; if it is zero, there is total conflict between the
two b.p.a.’s.

III. ALGORITHM OVERVIEW

When the robot detects it has potentially returned to
the start vertex, it adds a new hypothesis to its frame
of discernment. As the robot continues to circumnavigate,
each path-length measurement gives evidence about hy-
potheses that have been made so far. A belief function
maps the evidence into a basic probability assignment over
2Θ, which is merged with the global b.p.a.. When sufficient
belief is concentrated in a single hypothesis, that hypothesis
is accepted as the correct one.
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Fig. 1. A situation in which we hypothesize that vk = v0. The
region Rα

vk,v0
represents the positional uncertainty in the location of vk

with respect to v0. Since this region contains v0, it is possible that the
two vertices represent the same feature.

A. Hypotheses

For each vertex vi in the map, we use the model of the
robot’s odometry error to maintain a probability density
function Uvi,v0 describing the robot’s location with respect
to the start vertex v0. The uncertainty in this distribution
grows monotonically as the map expands. For a confidence
level α specified to our mapping algorithm, let Rα

vi,v0

represent confidence bounds of Uvi,v0 .
If the robot reaches a vertex vk that is structurally the

same as v0 and Rα
vk,v0

contains v0, then we create a
new hypothesis Hk ≡ vk = v0 (i.e. we hypothesize that
vk closes the loop). For an example of such a situation,
see Figure 1. The robot then continues to traverse the
environment, attempting to prove Hk.

Belief in the correctness of hypotheses is maintained
according to Dempster-Shafer theory over a frame of
discernment where each hypothesis constitutes a singleton.
This formulation reflects the fact that loop-closing hypothe-
ses are not independent. A singleton representing “none of
the current hypotheses” (N ) is also included in the frame
of discernment.

As an example: when a single loop-closing hypoth-
esis H1 has been made, the frame of discernment is
Θ = {H1, N} and b.p.a.’s are over the set 2Θ =
{∅, {H1}, {N}, {H1, N}}. When two loop-closing hy-
potheses have been made, b.p.a.’s are made over the set

2Θ = {∅, {H1}, {H2}, {N}, {H1,H2},
{H1, N}, {H2, N}, {H1,H2, N}} (4)

Unless disproven by a structural mismatch encountered
as the robot traverses, no hypothesis is ever removed from
the frame of discernment until some hypothesis has been
deemed correct.

B. Expanding the frame of discernment

When a new loop-closing hypothesis is made, the frame
of discernment must be updated to include it, and the
belief from the previous frame must be reassigned as the
initial belief for the new frame. An existing frame of
discernment Θk−1 is updated when a new hypothesis Hk

is discovered by adding Hk to the frame, i.e. Θk =
Θk−1 ∪ {Hk}.

The b.p.a. over 2Θk−1 cannot be transferred directly to
the corresponding members of 2Θk . Doing so would require
that elements of 2Θk that contain Hk be assigned zero
probability mass, and Dempster’s rule would never assign
probability mass to any element supporting Hk, regardless
of the evidence found in the future supporting Hk.

Basic probabilities are reassigned in the new frame as
follows: for all elements {A ∈ 2Θk−1 |N ⊆ A}, evidence
is reassigned into 2Θk as:

mk (A ∪ {Hk}) = mk−1(A) (5)

So, any elements from the previous b.p.a. containing N
(“none of the current hypotheses”) have their evidence
reassigned to the element in the new b.p.a. consisting of
the union of Hk and the previous element. Note that this
also makes intuitive sense: evidence representing none of
the previously-made hypotheses may, in fact, have been in
support of the new hypothesis. This operation preserves the
plausibility of all hypotheses (and N ); the plausibility of
Hk initially becomes the same as the plausibility of N . The
belief in each element of 2Θk−1 of which N is a subset is
not preserved; for all other elements, it is preserved. (Belief
in N itself is reassigned to {N,Hk}.)

The initial belief in Hk after this operation is zero.
However, depending on the mapping strategy being used,
we may have some initial evidence in support of Hk.
Our particular mapping strategy defines a ball Br∗

v0
of

nonzero radius around the start vertex within which no
other structurally similar vertex can exist (see [5] for
complete details). So, any evidence indicating the robot
is within this radius of v0 supports the new hypothesis. We
compute a simple b.p.a. in which

m(Hk) =
∫∫

Br∗
v0

Uv0,vk
(x, y) dA (6)

and the remainder of the probability mass is assigned to
complete ignorance. Using Dempster’s rule, this b.p.a. is
combined with our global b.p.a. to reflect the initial belief
in Hk. Forms of initial evidence about Hk that are specific
to particular mapping strategies may be integrated likewise.

C. Belief function

When a new path-length measurement is taken, it gives
evidence about the hypotheses that have been made so far.
If we have made k loop-closing hypotheses so far, there are
k sets of measurements L1 . . . Lk, one associated with each
hypothesis, of previous measurements that should match
the new measurement under the respective hypotheses.
Based on these sets of measurements, we must assign basic
probability to each element of 2Θ. This b.p.a. constitutes
our belief function given the new measurement. Once we
have made this b.p.a., we combine it with our previous
belief using Dempster’s rule. Note that our belief function
is responsible for determining the amount of “ignorance”
about which hypotheses are supported by a piece of evi-
dence — Dempster’s rule does not do this for us.

Our particular belief function draws on methods of
statistical inference. It essentially computes probabilities
that the measurements in each Li were taken from the
same wall, given the robot’s error model, and then uses
these probabilities to determine a b.p.a. over 2Θ.

For each set Li of measurements, we first compute a
goodness-of-fit value based on the z-score of the mea-
surements in Li. (The z-score represents the deviation



of a sample from the expected mean, expressed in units
of the standard deviation of the underlying distribution.)
We use the square of the z-score, computed using a
distribution with standard deviation σ̂ generated according
to the robot’s error model for the current “best estimate” ˆ̀
(based on Li) of the length of the wall:

z2 =
∑

`j∈Li

(`j − ˆ̀)2/σ̂2 (7)

The value of z2 follows a χ2 distribution with n =
|Li| degrees of freedom. So, the degree of support provided
by Li for Hi is computed as:

Φi =
∫ ∞

z2

yn/2−1e−y/2

2n/2Γ(n/2)
dy (8)

(This is simply the χ2 distribution with n degrees of
freedom.) Φi is thus a basic probability measuring the
likelihood that the measurements in Li come from the same
distribution. At the end of this step, we have a Φi for each
Li. We use the Φi’s to determine the b.p.a. over 2Θ.

First, we find a basic probability to assign to N , the
proposition that none of the hypotheses is correct. We
label the basic probability associated with N as Φ0 for
convenience. Let Φ0 = 1−maxi>0 Φi. This value reflects
the fact that the extent to which none of the hypotheses
are supported by a piece of evidence is limited by the
maximum support for any one hypothesis.

We then normalize the Φi’s (including Φ0) so that they
sum to one (i.e., so that they constitute a valid b.p.a.): Φi =
Φi/

∑
j Φj . Finally, we compute the b.p.a. for 2Θ using the

following procedure:

Algorithm 1 COMPUTE-BPA:
for j = |Θ| . . . 2 do

Let Λ = {A ∈ 2Θ | |A| = j}
for all A ∈ Λ do // compute PIC

pA ←
∑

i | Hi∈A Φi

ηA ← 1 +
∑

i | Hi∈A

Φi
pA

log
Φi
pA

log |A|
for all Hi ∈ Θ do // compute normalization constant

ti ← max
(
1,

∑
A∈Λ | Hi∈A ηA

)
for all A ∈ Λ do // compute b.p.a.

m(A)←
∑

i | Hi∈A Φi
1−ηA

ti

for all Hi ∈ Θ do // “bleed off” probability mass
Φi ← tiΦi

for all Hi ∈ A ∈ 2Θ | |A| = 1 do
m(A) = Φi // assign remaining mass to singletons

The value ηA ∈ [0, 1] is the “probability information
content” [9] of the (renormalized) Φi’s for the hypotheses
in element A ∈ 2Θ. This essentially measures the unifor-
mity of the Φi’s for these hypotheses. By using the prob-
ability information content in this way, we profess more
ignorance when evidence supports multiple hypotheses, or
when it is unclear whether evidence supports or does not
support a hypothesis.

This procedure, in essence, computes the b.p.a. by de-
termining the amount of ignorance about each element
in set A. In the first iteration, “overall” ignorance is
determined (because A = Θ). In later iterations (in
which the b.p.a.’s for lower-cardinality elements of 2Θ

are computed), ignorance about the remaining evidence
stored in the Φi’s belonging to each set is computed. By
the time the procedure arrives at the singleton elements,
the remaining probability mass is that which should be
attributed directly to specific loop-closing hypotheses (or
to N ). The computations involving the renormalization
constant ti are necessary because without it, it is possible
for more than the total probability mass remaining in a Φi

to be “bled off” in a single iteration of the outer loop.
Note that this belief function meets the requirements

stated in Section II.

D. Decision making

With our methods for modifying the frame of discern-
ment and for determining a b.p.a. for a piece of evidence,
we have all the tools necessary for accumulating belief
about loop-closing hypotheses. As the robot continues to
traverse the environment, belief about each new path-length
measurement is combined with our global belief. Whenever
a new loop-closing hypothesis is made, it is added to the
frame of discernment. However, we must also provide a
mechanism for making decisions about when to accept a
hypothesis as the correct one.

A simple way to do this is to specify a threshold β to
the algorithm. When the belief in any single hypothesis
exceeds β, that hypothesis is accepted. In fact, this simple
strategy works well in most cases — particularly in real-
world situations — because after taking several new mea-
surements, the belief in the correct hypothesis converges
quickly to one. The difficulty arises when an incorrect
loop-closing hypothesis is made, and it is not obvious after
several measurements that it is a wrong hypothesis.

These kinds of hypotheses occur when the world is both
structurally and metrically self-similar. Two ways in which
a world might be self-similar are when the world: (1) con-
sists of paths that spiral inward or outward; or (2) consists
entirely or partially of repeating similar sequences of paths
and features. Our evidential approach fares well in “spiral”
worlds (by their nature, these worlds yield comparisons
between different-length edges). Worlds with repeating
subsequences are more difficult; we discuss strategies for
effective loop-closing in such worlds in Section V.

IV. EXPERIMENTAL RESULTS

We have implemented our algorithm in simulation and
on a mobile robot (Figure 2) that uses the behavior-based
mapping strategy detailed in [5]. Simulated experiments
were performed on a variety of environments, including
simple worlds and others crafted to present hard loop-
closing scenarios. Real-world experiments were performed
in both hand-made and unmodified building environments.
All experiments were performed using a fixed hypothesis-
acceptance threshold requiring that belief in a hypothesis



Fig. 2. Our prototype robot is a differential drive mobile robot
approximately 20 cm long. It has five Sharp GP2D12 infrared range
sensors, 256 CPR encoders on each wheel, and an Atmel ATMEGA64
microcontroller as the main processor.

σ% w1 w2 w4 w5 w9 w11 w12
4 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0
6 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0
8 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 9/1/0
10 10/0/0 10/0/0 10/0/0 10/0/0 9/0/1 10/0/0 9/1/0
12 9/0/1 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 9/1/0
14 10/0/0 10/0/0 10/0/0 10/0/0 9/0/1 10/0/0 10/0/0
16 10/0/0 9/0/1 10/0/0 10/0/0 10/0/0 9/0/1 8/2/0

Fig. 3. Results of experiments performed in simulated environments,
listed in order of complexity (self-similarity and size): w1 is the simplest
and w12 the most complex. Each entry is of the form: “correct loop
closings / incorrect hypotheses accepted / correct hypothesis not made.”
The error model used in testing assumed standard deviation directly
proportional to the length of a measurement; σ% is thus the percentage
of the measurement length that was taken to be the standard deviation.
For each world and each error percentage, ten simulations were run.

exceed 0.99. The robot used a confidence limit of 0.99 to
compute confidence bounds for making hypotheses.

More than 700 simulations were performed in seven
different simulated environments under various error condi-
tions. Figure 3 presents the results. Each environment had
a single loop; the robot either closed the loop correctly,
accepted an incorrect hypothesis, or failed to make the cor-
rect loop-closing hypothesis. In 98.6% of these simulations,
loops in the environments were closed correctly.

Of the failures, half occurred in a world specifically
designed to defeat the algorithm by presenting an especially
challenging degree of self-similarity (Figure 4). These fail-
ures were due to the acceptance of an incorrect hypothesis
prior to the discovery of the correct one. (In our previ-
ous work, this world defeated our original loop-closing
algorithm more than 44% of the time; the new algorithm
failed only 7% of the time.) All other failures occurred

v0

Fig. 4. A highly self-similar environment (w12) that sometimes fools our
loop-closing algorithm under certain error conditions. The start vertex (v0)
is in the “well” that is second from left on the bottom (the worst case
scenario for this environment). By the time the robot circumnavigates
the environment to reach the leftmost well, it mistakes this for the start
(due to error) and generates an incorrect hypothesis, shown as a dashed
line between the matched vertices. Because of the self-similarity, this
hypothesis is occasionally confirmed within four edge traversals, before
the correct hypothesis is made.

v0

Fig. 5. Basic map, after loop-closing, of the corridors on the first floor
of an academic building (Amos Eaton) at RPI, constructed using a wall-
following behavior. Six measurements were needed to verify the correct
loop-closing hypothesis, which was the only loop-closing hypothesis made
(the start vertex is the large dot at bottom left). The convergence of the
global belief function is shown in the plot.

when the correct hypothesis was not made because the start
vertex fell outside the confidence bounds on the robot’s
location. Note that this occurred less than 1% of the time
— consistent with our choice of a 0.99 confidence limit
for making hypotheses.

Our robots made real-world maps of several different
environments of varying size. The largest map, shown in
Figure 5, is of the first floor hallways of a 12 m × 30 m
academic building. In every real-world test, the robot closed
the loops in its map correctly.

V. DISCUSSION

Continuing the forward traversal of the environment after
making a loop-closing hypothesis presents several issues.
An important concern is that one can never be completely
certain that a hypothesis is correct. Nevertheless, we believe
that the idea of building evidence in support of and against
a hypothesis is both intuitive and reasonable for use in
practical situations.

A. Repeating subsequences

Worlds with self-similarity in the form of repeating
subsequences (such as that in Figure 4) provide a difficult
challenge. In these types of worlds, an incorrect loop-
closing hypothesis is sometimes accepted as correct before
the correct hypothesis is even made. The situation in which
an incorrect hypothesis is accepted is a “false alarm,” and
the frequency at which this occurs is the false alarm rate.
(Note that the frequency at which the correct hypothesis is
made is the probability of detection, and is generally equal
to the confidence limit α specified to the algorithm.)

The simplest way to reduce the false alarm rate is to
increase the acceptance threshold β, requiring more evi-
dence to accept any hypothesis. In order to guide the choice



of β, we can consult measures of the self-similarity of the
environment. For example, we might compute the entropy
of the structure and path lengths in the environment. The
lower the entropy, the more self-similar the environment,
and the higher we should make β in order to reduce
the false alarm rate. Of course, we can only base our
self-similarity measures on what has been encountered in
the environment so far. We make the assumption that no
subset of the environment is significantly more complex
than the average complexity of the whole — i.e. that the
environment is relatively uniform. This assumption has
proven realistic in most practical scenarios.

A key advantage of our loop-closing formulation is the
ability to represent ignorance about which hypotheses are
supported by a piece of evidence. This means that when
evidence matches several hypotheses equally, it affects our
belief as we would expect — our direct commitment of
belief to the hypothesis singletons is small because most
of our belief is assigned to the set containing all of the
closely-matching hypotheses. This is an important tool for
closing loops in environments with repeating substructure
in which incorrect hypotheses occur frequently, and often
appear to be good matches initially.

B. Detecting “nth-lap” hypotheses

One tricky implementation detail merits brief discussion.
In very simple environments, it is sometimes the case
that the robot creates the correct hypothesis, but does not
acquire enough evidence to accept it before it again returns
to the start vertex and creates another, separate hypothesis.
This can lead to problems because, for the two hypotheses,
the world appears completely self-similar. We term this an
“nth-lap” situation, because a new hypothesis is created
like this on every “lap” around the loop to be closed. In
practical situations, nth-lap hypotheses are typically not an
issue, since most environments are extensive enough that
loop-closing decisions are made during the second lap.

In general, detecting such a situation is reasonably
straightforward. The number of paths that must be explored
to make an nth-lap hypothesis must be a multiple of
the number of paths explored before making the first-lap
hypothesis. If two hypotheses Ha and Hb meet this criteria,
and if η{Ha,Hb} is frequently close to zero (evidence
frequently supports both Ha and Hb), the hypotheses are
likely nth-lap hypotheses.

Upon detecting an nth-lap situation, the first of the two
hypotheses should be assigned the belief in the second, and
the second hypothesis should be removed from the frame
of discernment.

VI. CONCLUSIONS

In this paper, we have presented an evidential approach
to the problem of “closing the loop” in a topological map
— recognizing when the robot has returned to a node it
has already visited. Though our loop-closing algorithm was
discussed primarily in the framework of a simple “circum-
navigation” mapping strategy, it can be easily extended to
different mapping scenarios. Our approach is based on the

Dempster-Shafer theory of evidence, which allows us to
express “ignorance” about which loop-closing hypothesis is
supported by a piece of evidence. This capability provides
important benefits when faced with difficult loop-closing
problems, particularly in highly structurally and metrically
self-similar environments.

Our loop closing approach modifies the Dempster-Shafer
frame of discernment whenever a new hypothesis is dis-
covered. It also introduces a belief function that makes a
basic probability assignment reflecting our belief in each
hypothesis, given a certain piece of evidence. This function
determines the “conflict” inherent in evidence and assigns
ignorance accordingly.

We have also discussed methods for reducing the false
alarm rate of our loop-closing algorithm in difficult worlds,
based on measures of the self-similarity of the environment.
Our approach shows promise in this respect, but more work
must be done to clearly identify the relationship between
self-similarity measures and false alarm rate. In particular,
we are interested in providing guarantees on the false alarm
rate, depending on the self-similarity of the environment.

Experiments show that our loop-closing algorithm is
effective, even in difficult worlds. In simulated tests, the
algorithm closed loops correctly more than 98% of the time
— and more than 99% of the time in environments not
specifically designed to defeat it. In real-world tests, the
correct loop-closing hypothesis was chosen in every case.
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