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Abstract. Most mobile robot mapping and exploration research makes use of long-
range, powerful sensors such as laser rangefinders to create maps. In this paper we
take a different approach, creating maps using robots with limited sensing capabili-
ties, most notably in their sensor range. Our prototype robots use only five infrared
range sensors with a maximum range of 80 cm; in general, these robots cannot
“see” both sides of a hallway. We present an algorithm for such a robot to build
a topological map in the presence of sensing and odometry error. In doing so, we
develop a paradigm to extend topological mapping to open spaces, long considered
a deficiency of topological mapping; we also introduce an evidential approach to
the problem of “closing the loop.”

1 Introduction

Imagine you are navigating through your house in the dark — you’ve woken
up in the middle of the night, hungry for a snack. You get out of bed, but leave
the lights off so you don’t wake everyone else. You can’t see anything, so you
run one hand along the wall as you walk down the hallway. There are small
discontinuities in the wall, like the closet door, but you keep walking straight.
You feel the wall “end,” so you turn the corner and keep going. Perhaps at
some point, you leave the wall and walk across a (known obstacle-free) room,
holding your hand out in front to detect when you reach the opposite wall.
You eventually reach the kitchen without much trouble.

This blind navigation is an apt analogy for how a sensing-limited robot
“sees” the world. By “sensing-limited,” we mean that the robot has sparse
and very limited-range information about the world. These limited sensing
capabilities result in a restricted view of the world — features of the envi-
ronment can only be detected by observing a time series of sensor readings.

Small robots with limited sensing capabilities are inexpensive, and are
therefore ideal in applications where many potentially disposable robots are
required to map and explore a building in parallel, e.g. in search and rescue
or urban reconnaissance scenarios. In this paper however, we focus solely on
the problems of exploration, mapping, and navigation for a single robot.

Our problem is for a sensing-limited robot to explore an unknown envi-
ronment, creating a topological map that it can later use to navigate between
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any two previously-visited locations. The resulting paths should be efficient
to the extent that safety, limited-range sensing, and errors in sensing, robot
motion and odometry allow.

In this paper, we demonstrate that such a robot can complete this task,
though there are some limitations based on the size and geometric complexity
of the world. We should not expect the same performance from a sensing-
limited robot as we would from a robot with richer sensing modalities (e.g. a
laser scanner). While we permit lesser performance in terms of time and
scope, we still expect reasonable accuracy.

This paper presents a mapping strategy that constructs a topological
map in which vertices are places where a robot behavior terminates, and
edges represent a sequence of behaviors that move the robot from one place
to another. We develop a new approach to the problem of “closing the loop”
— recognizing that the robot has returned to a place in the world that it has
already visited. Since sensing-limited robots cannot uniquely recognize a place
based on instantaneous sensor readings, we create a hypothesis that the robot
has closed the loop based on its geometric position estimate, and attempt
to verify this hypothesis using an evidence-based approach that compares
characteristics of subsequent edge traversals.

Our behavior-based map representation also allows us to introduce tech-
niques that enable our maps to transcend the typical weakness of topological
maps in representing open spaces. First, we introduce the concept of por-
tals, which link open spaces (mapped by wall-following) to narrow corridors
(mapped by hall-following). Second, we introduce the idea of forays, which
cross open spaces to produce more direct links between vertices in the map.

1.1 Assumptions

We consider a robot that has a small number of short-range sensors. These
sensors return the distance to the nearest obstacle along a straight line; they
are “short-range” in that their maximum range is small compared to the
dimensions of the environment. There must be enough sensors to robustly
execute the behaviors described in Sec. 3.1. As an example, our robot has
five infrared range sensors: one forward sensor and two sensors on each side.

There is known error in the robot’s movement, odometry, and sensing.
We assume these errors are random and zero-mean, and that we can merge
and compound measurements and compute confidence bounds for a given
confidence level.

We assume an enclosed, static, rectilinear environment. Rectilinearity is
a strong assumption — it removes uncertainty in the robot’s orientation —
but it allows us to focus on the fundamental mapping problems. However,
the environment may be “non-smooth:” there may be small discontinuities
in the walls of the environment, such as rectilinear protrusions and recesses
in a hallway due to door frames, structural columns, etc.
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2 Related work

There are two traditional paradigms for robotic mapping: metric maps and
topological maps. In metric maps, the geometry of the world is explicitly rep-
resented, either through exact or approximate representations. In topological
maps [8], “places” in the world (typically hallway junctions) are represented
by vertices in a graph, and paths between places are represented by edges.
Metric maps provide a detailed world representation but require more storage
and are sensitive to measurement errors. Topological maps offer a concise rep-
resentation but (as traditionally implemented) cannot represent open spaces.

Many researchers have combined these approaches by using metric maps
at nodes in topological maps. For example, Tomatis et al. [17] use a topologi-
cal map to represent a network of hallways and use metric maps to represent
rooms. In contrast, our work extends the topological mapping paradigm to
represent open spaces. Our use of a wall-following behavior to generate an
initial map of an open area is related to the idea of “coastal navigation” [13]
which recognizes that areas near walls and obstacles have “high information
content” due to the features they produce. Once the robot has built a map
of the world boundaries, it can safely explore the interior.

A fundamental problem in topological mapping is recognizing an already-
visited place (“closing the loop”). With sufficiently rich sensing, this problem
is easily solved by recording a unique “sensing signature” [9] for each place.
Without such sensing capabilities, the robot must continue exploring to de-
duce whether a loop has been closed. Kuipers’ “rehearsal procedure” [10]
encapsulates the general idea of using the map topology to make this deci-
sion. Choset and Nagatani [3] describe an approach where structural char-
acteristics of the map (e.g., the degree of vertices and the order of incident
edges) are the primary criteria for verification. Tomatis et al. [17] embed this
comparison in a pomdp that should show a single peak upon loop-closing.

Our approach to this problem is based on accumulating evidence to verify
or reject loop-closing hypotheses. The evidence is based on the odometry error
model and is combined using Dempster-Shafer theory [14]. This approach is
related to that of Cox and Leonard [4], who maintain multiple hypotheses
about the state of a dynamic world. The probability of each hypothesis is
assigned and updated using a Bayesian framework. The main advantage of a
Dempster-Shafer based method is the ability to represent “ignorance.”

Our work is related to the simultaneous localization and mapping (slam)
problem. However, slam is typically solved using rich sensing (a scanning
laser range-finder) and produces metric maps. See Thrun’s recent survey [16]
for an overview of work on slam.

Others have addressed mapping and exploration with limited sensing.
Butler et al. [2] describe coverage (equivalent to metric mapping) using robots
with only contact sensors but with near-perfect odometry. Doty and Seed [5]
have shown preliminary results in creating a “landmark map” using a robot
with four short-range infrared sensors and one long-range sonar sensor.
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3 Basic mapping algorithm

The “basic map” created by our robots is a topological map created by cir-
cumnavigating open spaces with a wall-following behavior and traversing nar-
row corridors with a hall-following behavior. In this paper, we focus primarily
on mapping of open spaces. First, we describe the required robot behaviors
and then detail construction of the map.

3.1 Behaviors

In order to create the basic map, we require that our robot be capable of
executing the following simple behaviors:

• The “turn” behavior causes the robot to rotate a specified angle.
• The “move-to-wall” behavior causes the robot to move forward until one

of its sensors detects a wall. The robot then moves so that its “wall-
following sensors” (side sensors) are aligned with this wall.

• The “wall-following” behavior (Fig. 1) causes the robot to move forward,
maintaining a range r0 to the wall with its wall-following sensors; any
small discontinuities in the wall cause the robot to adjust and continue
wall-following. The behavior terminates when the robot detects a well-
defined corner. A well-defined exterior corner occurs when the wall “falls
away” beyond a range of rmax; likewise, a well-defined interior corner
occurs when the wall juts inward within rmin. Any discontinuity that
remains within the range [rmin, rmax] of the robot’s wall-following sensors
is an ill-defined corner (currently unused in our maps).

In the case of an exterior corner, wall-following terminates at a distance
of r0 past the discontinuity; for an interior corner, wall-following stops at
a distance of r0 before the discontinuity. Note that exterior corners will
typically be detected by the wall-following sensors, whereas interior cor-
ners will be detected by front, side or bump sensors. The wall-following
behavior must be capable of terminating in a reasonably repeatable lo-
cation, regardless of the direction of travel. Because of these conditions,
no two well-defined corners of the same type can be within a distance

r∗ =
√

r2
0 + r2

min (1)

• The “hall-following” behavior is similar to the wall-following behavior,
except that it is only used when the robot is traversing a “corridor” of
width ≤ 2r0. In this case, both of the robot’s side sensors can “see” walls,
and the robot moves through the center of the corridor.

Discussion The wall-following and hall-following behaviors are difficult to
design because they are responsible for properly navigating through the envi-
ronment. One requirement is that they must terminate in the same location,
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rmax r0 rmin r0

r0

r0

Fig. 1. Wall-following and feature detection. The “safe” wall-following
range [rmin, rmax] is indicated by the highlighted area. Vertices are placed at a
distance of r0 from both incident walls of a well-defined corner. The leftmost corner
is exterior; the rightmost is interior. The rest of the discontinuities are ill-defined.

regardless of the direction of travel. This is done by maintaining the proper
r0 offset during wall-following and by staying centered while hall-following.

One way for the robot to make lateral adjustments while wall- or hall-
following is to make only rectilinear motions, mimicking every discontinuity
of the wall. This would be time consuming and unnecessary: our primary
interest is in capturing the overall structure of the environment. Our current
implementation instead makes gradual corrections while continuing forward.
The tradeoff for this approach is that distance estimates may be inaccurate,
and there are situations where small spacing between discontinuities may
cause feature misidentification since the robot is not at offset r0 and not par-
allel to the wall. Adjusting the responsiveness of the behaviors trades off the
risk of feature misidentification for accuracy in the distance measurements.

The “perceptual aliasing” problem — the inability to detect small obsta-
cles due to low sensor density — is another issue when creating maps with
sensing-limited robots: the robot may encounter an obstacle without first
sensing it. For example, the robot may bump into a chair leg that is not
seen by its sparsely-placed range sensors. For such situations, bump sensors
are necessary and can be thought of as extremely short-range sensors to be
incorporated into the mapping behaviors accordingly.

3.2 Mapping process

We first consider an environment consisting only of open spaces. (We remove
this assumption in Sec. 3.4.) Our basic map-making process is as follows:

• From an arbitrary starting location, the robot initiates the move-to-wall
behavior, which aligns the robot with some wall in the environment.

• The wall-following behavior is activated, and its termination point be-
comes the start vertex v0 — the first vertex in our topological map.

• After finding v0, the robot turns as appropriate to follow the next wall
(incident to v0). Vertices are added for each well-defined feature that
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Fig. 2. A situation in which we hypothesize that vk = v0. The region Rα
vk,v0 repre-

sents the positional uncertainty in the location of vk with respect to v0. Since this
region contains v0, it is possible that the two vertices are the same.

terminates the wall-following behavior. Each new vertex is connected,
with an undirected edge, to the previously discovered feature (i.e. v0 ↔
v1, v1 ↔ v2, and so on).

• This process repeats until the robot returns to v0. This is guaranteed to
happen, since the environment is enclosed. Recognizing when it occurs is
the problem of “closing the loop.”

3.3 Closing the loop

For each vertex vi in the map, we use the model of the robot’s odometry error
to maintain a probability density function Uvi,v0 describing the robot’s loca-
tion with respect to v0. The uncertainty in this distribution grows monoton-
ically as the map expands. For a confidence level α specified to our mapping
algorithm, let Rα

vi,v0
represent confidence bounds of Uvi,v0 .

If the robot reaches a vertex vk that is the same type (interior or exterior
corner) and Rα

vk,v0
contains v0, then we create a hypothesis that vertex vk

closes the loop. See Fig. 2 for an example of such a situation. Note that if the
entire region Rα

vk,v0
falls completely within r∗ of v0 (generally not the case),

we can immediately declare the hypothesis correct with at least the specified
confidence since no other vertex can be within that radius of v0.

Once a loop-closing hypothesis is made, we attempt to verify it. One way
to do this is to backtrack — travel back and forth between vk and v0, taking
additional measurements of all the edges. Under the assumption of random
zero-mean errors, this will reduce the size of Rα

vk,v0
until it either lies entirely

within r∗ of v0 or until v0 does not lie in Rα
vk,v0

. This is the only certain way
to verify or reject a hypothesis, but it is impractical as many trips back and
forth between vk and v0 are required.

Instead, we have the robot continue traversing edges in the “forward”
direction. If it comes upon a structural difference (e.g. vertices of different
types or incident edges at different orientations), the hypothesis can be re-
jected. In order to verify the hypothesis, however, we compare lengths of edges
that should match under the hypothesis. The degree to which the measure-
ments match (or don’t match) provides evidence in support of (or against)
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the correctness of the hypothesis. The robot continues traversing edges until
sufficient evidence accumulates to accept or reject the hypothesis.

Dempster-Shafer approach Dempster-Shafer theory gives us a natural
way to assign “belief” to a set of possibilities — in this case, that the hy-
pothesis is correct, which we denote as C, or incorrect, denoted I. It also
provides a way to represent “ignorance” about these possibilities. Ignorance
can be thought of as uncertainty about which possibility is supported by
evidence, and is denoted as {C, I}.

Suppose that we have made a hypothesis H0 that two vertices in our
map are the same. Continuing our forward traversal of the walls of the en-
vironment, we take a series of new wall length measurements. Under H0,
each revisited edge in the map has an associated set of measurements L =
{`1, `2, . . . , `n}, with n ≥ 2 which should all be of similar length. Dempster-
Shafer theory is used to merge the evidence provided by multiple sets of such
measurements (each corresponding to a different edge in the map).

We compare edge measurements directly instead of comparing vertex loca-
tions because errors in each edge measurement are independent. Using vertex
locations for evidence would reuse early edge measurements when comparing
subsequent vertices, giving them undue weight in providing evidence.

Belief function Given a set L of measurements, and their associated uncer-
tainty distributions, we must determine the degree of support they provide
for our hypothesis. To do this, we define a belief function, denoted mL, where
mL(C), mL(I) and mL({C, I}) are our belief, given L, that H0 is correct,
our belief that H0 is incorrect, and our “ignorance” (the degree to which L
provides evidence neither for nor against H0), respectively. These are basic
probabilities meeting the requirements of Dempster-Shafer theory such that:

mL(C) + mL(I) + mL({C, I}) = 1 (2)

Our particular belief function draws on methods of statistical inference.
It essentially computes probabilities that the measurements in L were taken
from the same wall, given the robot’s error model. The “probability infor-
mation content” [15] of these probabilities is used to measure our degree of
ignorance. Specifically, the belief function we use is:

mL(C) = Φ(L)ηL (3)
mL(I) = (1− Φ(L)) ηL (4)

Here, Φ : L → [0, 1] returns the probability of obtaining L, assuming L con-
tains measurements from the same wall. The particular Φ-function we use is
a goodness-of-fit test based on the z-score of the measurements in L. (The z-
score represents the deviation of a sample from the expected mean, expressed
in units of the standard deviation of the underlying distribution.) We use the
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square of the z-score, computed using a distribution with standard devia-
tion σ̂ generated according to the robot’s error model for the current “best
estimate” ˆ̀ (based on L) of the length of the wall:

z2 =
∑
`i∈L

(`i − ˆ̀)2/σ̂2 (5)

The value of z2 follows a χ2 distribution with n = |L| degrees of freedom. So,
the degree of support provided by L for H0 is computed as:

Φ(L) =
∫ ∞

z2

yn/2−1e−y/2

2n/2Γ (n/2)
dy (6)

The value ηL ∈ [0, 1] in Eqns. 3 and 4 represents the “probability infor-
mation content” [15] of Φ(L), computed as follows:

ηL = 1 + Φ(L) log2(Φ(L)) + (1− Φ(L)) log2(1− Φ(L)) (7)

The probability information content of Φ(L) essentially measures the “dis-
tance” of Φ(L) from the uniform distribution. Thus, given a Φ(L) with high
entropy (less information), we profess more ignorance, and for a Φ(L) with
low entropy (more information), we profess less ignorance.

Evidence accumulation Upon first making a hypothesis, we must initialize
the overall belief in the hypothesis. Recall that geometrically, no two features
of the same type and orientation can be within a radius r∗ (see Sec. 3.1).
This suggests the metric

m(C) =
∫∫

Br∗
v0

Uv0,vh
(x, y) dA (8)

where v0 is the start vertex, Br∗
v0

is the ball of radius r∗ about v0, and H0 ≡
v0 = vh. In other words, the initial value of m(C) is the probability, according
to our error model, that |v0−vh| ≤ r∗ (in which case they must represent the
same feature). We initialize m(I) to zero: at the moment we make H0, we
have no basis for assigning belief mass to the possibility that H0 is incorrect.

As we take new measurements, we must combine the evidence they pro-
vide with previous evidence we’ve acquired, in order to update our global
belief in the correctness of the hypothesis. To combine evidence, we use
Dempster’s rule of combination. In our particular application, the combi-
nation rules are as follows: given global belief m and belief mL attributed to
a specific set of measurements L,

m⊕mL(C) =
m(C)mL(C) + m(C)mL({C, I}) + m({C, I})mL(C)

1−m(C)mL(I)−m(I)mL(C)
(9)

m⊕mL(I) =
m(I)mL(I) + m(I)mL({C, I}) + m({C, I})mL(I)

1−m(C)mL(I)−m(I)mL(C)
(10)
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We continue building evidence about a hypothesis until our overall belief
in its correctness (or incorrectness) surpasses some threshold β. In general,
we choose β = α, the confidence bound used in generating the hypothesis.
In [1], we provide additional discussion about making loop-closing decisions,
and present extensions to the evidential loop-closing method for dealing with
more complicated mapping scenarios.

Discussion The worlds in which it is most difficult to close the loop are
those with structural self-similarity. Two ways in which a world might be
self-similar occur when the world: (1) consists of walls that spiral inward or
outward; or (2) consists entirely or partially of repeating similar sequences
of walls. Our evidential approach fares well in “spiral” worlds (by their na-
ture, these worlds yield comparisons between different-length edges). Worlds
of “repeating similar sequences” are generally more difficult, though those
consisting only partially of such sequences can often be properly mapped
despite the presence of error, given a high enough evidence threshold.

Continuing the forward traversal of the environment after making a loop-
closing hypothesis presents several issues. The key concern is that one can
never be completely certain that a hypothesis is correct — a deficiency
of nearly all hypothesis-based methods for closing loops. The backtracking
method resolves this issue, but only after indefinitely many measurements.
We believe that the idea of building evidence in support of and against the
hypothesis is both intuitive and reasonable for use in practical situations.

A danger of the hypothesis-based approach is that incorrect hypotheses
may be accepted as correct (or vice versa). One way to deal with this is to
keep multiple hypotheses and never commit to any one of them (i.e. retain
the hypothesis that the loop has not been closed). If several hypotheses seem
correct, the robot can direct its exploration toward differentiating features.
When a single hypothesis has emerged as correct, the map associated with it
can be used for navigation, etc. If it is later deemed incorrect, additions to
the map depending on that hypothesis can be discarded.

We have made a few other observations about the loop-closing problem:

• When the robot has actually returned to v0, all inconsistent hypotheses
will have been disproved by structural mismatches.

• The robot’s orientation must pass through a full 360◦ (net) before it can
return to the start vertex.

• False positive or false negative loop-closings can be disproved or proved
later, but it is preferable to find the right hypothesis during basic map-
ping. As such, evidence thresholds should be reasonably high given no
prior knowledge of the environment.

• Prior knowledge of some aspects of the world (e.g. feature density, distri-
bution of potential wall lengths, etc.) might lead to more efficient loop-
closing by allowing us to design more informed belief functions and letting
us be more aggressive in accepting or rejecting hypotheses.
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(a) (b) (c)

Fig. 3. Portals occur under special wall-following or hall-following terminating con-
ditions. In each figure, the robot moves from left to right. In Fig. (a), the interior-
corner portal is detected while following a wall. In Fig. (b), the portal, detected
while turning an interior corner, leads directly to another open space. In Fig. (c),
the portal is detected while turning an exterior corner.

3.4 Portals and narrow corridors

We have so far addressed only the case where open space lies to one side of
the robot. When the area around the robot is narrow enough that the robot
can see walls on both sides, the robot should switch from wall-following to
hall-following. We define portals (Fig. 3) to be special undirected edges in the
map that make the connection between these two different mapping modes.

In our basic mapping, we can use portals to skip over narrow corridors that
may lead to other open areas, leaving them to be explored later. Often, this
has the advantage of making the loops in the basic map smaller and therefore
easier to close. Although doorways are prime candidates for portals, there is
nothing special about them except that they constitute a narrow corridor.

Due to limited space, we omit a complete discussion of detecting portals
and exploring narrow corridors. Though recognizing a portal condition is gen-
erally simple — side sensors on the non-wall-following side suddenly detect an
object — a number of circumstances exist in which portals might occur, and
each needs to be handled specifically. Our wall-following and hall-following
behaviors use a “probing” strategy to find portals: upon encountering what
appears to be a well-defined feature, they examine the area around the fea-
ture, attempting to determine if it constitutes a boundary between an open
space and a narrow corridor. This method is also used when hall-following to
differentiate between different types of hallway junctions.

For complete specifications of the wall-following and hall-following behav-
iors and discussion of portal detection, see [1].

4 Refinements

After we have completed the basic mapping process, navigation between any
two points in the map is straightforward: we search the map (graph) for the
shortest sequence of behaviors (based on time estimates) between the points
and then execute this sequence. However, navigation through the basic map
is inefficient in many cases: the robot may need to circumnavigate half of a
building to reach a point across a wide hallway.
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Uv j ,vi

v j

vi φ

Fig. 4. A refinement from vertex vi to vertex vj . The robot turns to angle φ and
“forays” toward the opposite wall. The robot’s angular uncertainty (highlighted) is
small enough that it is confident it will land on the target wall.

The second phase of our algorithm introduces refinements into the map
which improve its usefulness for navigating through open spaces (and for dis-
covering “islands” in these spaces when they exist). Refinements to our basic
map are special directed edges that connect disjoint places in the environ-
ment with paths that pass through open (featureless) regions. Refinements
offer a tool for extending topological maps to such spaces in a natural way.

Our refinements are based on the geometry of the basic map. Because
of measurement error during basic mapping, the map is not geometrically
consistent. Prior to generating candidate refinements, we must embed the
vertices of the map in a metric space. This problem has been addressed
by several researchers, including Duckett et al. [6], Lu and Milios [12], and
Golfarelli et al. [7]. Any of these methods suffice; the reference frame for the
vertices can be placed arbitrarily.

4.1 Forays

Suppose we wish to add a path through free space to connect vertex vi in our
basic map with vertex vj . If the robot experienced no movement error, we
could do this by simply turning the robot towards vj and driving straight.
However, to allow for error in the basic map and in the robot’s motion, we
direct the robot towards a wall adjacent to vj . This foray across open space,
then, consists of the sequence of behaviors: (1) turn toward the target wall
(incident to the target vertex); (2) move-to-wall; (3) wall-follow to the target
vertex.

We already have a means for estimating the relative uncertainty of vertex
locations, using uncertainty distributions based on the robot’s error model.
Confidence limits specify a region within which we believe (with the desired
confidence) the vertex lies.

We assume that the uncertainty in the robot’s location estimate as it
forays from vi, due to the robot’s inability to drive in a straight line, can
be bounded by an angular range originating at vi. The robot’s positional
uncertainty grows with the length of the foray.
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There are two potential refinements from a vertex vi to another vertex vj ,
corresponding to the two walls incident to vj . For each path, the robot forays
in such a way that it lands on the desired wall. So, a valid refinement is
possible only when the positional uncertainty accumulated by the robot as it
forays is less than the total length of the target wall (between the confidence
bounds in the locations of its endpoints). For an example foray, see Fig. 4.

We can make two types of refinements with this approach: passive re-
finements, which can be computed directly from the basic map, and active
refinements, which require further exploration of the world.

Passive refinements Passive refinements use knowledge of the area swept
out by the robot’s sensors as it performed its initial exploration. The union of
all the area swept out by the robot’s sensors is the “known space.” A simple
approximation can be obtained by storing the shortest range detected by the
sensors opposite the wall-following sensors when traversing each wall.

Using the geometry of our basic map, we can immediately determine
which candidate refinements pass only through the known space, and add
these refinements to our map. Fig. 4 shows a simple example of such a refine-
ment; though the robot could not see both sides of the hallway while building
the basic map, the areas swept out by its non-wall-following sensors overlap,
so we may infer the entire hallway is obstacle-free.

Active refinements & exploration Potential refinements passing partially
or entirely through unknown space must be actively explored to verify that
they can be traversed, since there may be obstacles in the unknown space.

Suppose that, when foraying, the robot encounters an obstacle. In this
case the robot must be able to safely return to a known place in its basic
map — otherwise, it is lost and will have to rebuild its basic map, or at least
relocalize itself in the map. Prior to making forays, we discard those that are
so long that we are unable to ensure the robot will be able to return to a
known location in its original map. The identification of these “unsafe” forays
is based on the robot’s odometry error model and the estimated distance
between the origin and destination of each foray.

For the remaining exploration targets, we compute a sequence in which
to explore them. One method for constructing this sequence might be to use
a traveling-salesman like approach; unexpected obstacles might require the
sequence to be re-planned. After planning a sequence, each foray is executed
in turn.

If we encounter no obstacles until we reach the target wall, we keep the
refinement; otherwise we discard it. If an obstacle is encountered, the robot
begins the basic mapping process to map the obstacle. If its positional un-
certainty accumulates too much before it encounters a well-defined feature,
it gives up and returns to its original map. Otherwise, it creates a basic map
of the obstacle, connecting the obstacle to its original map with refinements.
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Fig. 5. Our prototype robot is a differential drive mobile robot approximately 20 cm
long. It has five Sharp GP2D12 infrared range sensors, 256 CPR encoders on each
wheel, and an Atmel atmega64 microcontroller as the main processor.

4.2 Discussion

The refinements described here are reminiscent of the LMT [11] approach
to compliant motion planning in which successive preimages of the goal are
computed, taking into account uncertainty in the robot’s motion. Note that
refinements serve to both explore unknown parts of the space as well as to
create more efficient pathways through the world. The actions associated with
a foray are a simple sequence of behaviors. More complex sequences could
be planned that involve conditional branches, loops, or longer sequences of
behaviors. For example, the robot could drive directly toward an interior
corner vertex; it might land on either of the two supporting walls and must
wall-follow in the appropriate direction to reach the goal vertex. In the ex-
treme, we could form a completely connected graph, creating a “program” of
behaviors to take the robot between any pair of vertices.

The computation required would be considerable and mostly unnecessary
— most of these links would never be used. The refinements described earlier
can serve as the building blocks for more sophisticated behavior sequences.

5 Experimental Results

We have implemented our mapping algorithm both in simulation and on a mo-
bile robot (Fig. 5), with promising results. Simulated experiments were per-
formed with a variety of simple worlds, and with several more complicated en-
vironments. Real-world experiments were performed in both specially-tailored
and unmodified building environments.

Our simulations, which include the exploration of refinements, have been
effective in mapping large worlds (Fig. 6), even under harsh error conditions.
In over 200 trials in small worlds, with varying degrees of odometry error,
97% of the maps were structurally correct after initial loop-closing.

Our hardware experiments have focused primarily on verifying the evi-
dential loop-closing method. Despite the robot’s sparse sensing and the often
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Fig. 6. Map created in simulation. Refinements to the basic map are included here;
islands have not been mapped.

(a)

v0

(b)

Fig. 7. Basic map created using the hardware from Fig. 5. In Fig. (a), the final
map (after loop-closing and embedding) is overlaid on the floor plan. The envi-
ronment is approximately 4.5 m × 2 m. In Fig. (b), the raw data for the map is
displayed. Dotted lines are drawn between vertices that match under the correct
hypothesis; the start vertex is the large dot at upper right. Here, the robot needed
five measurements to accumulate 0.99 belief in the correct loop-closing hypothesis.

large errors it experienced, the algorithm closed loops correctly in most cir-
cumstances. Real-world maps were made of both small areas (Fig. 7) and
large areas, including the 12 m × 30 m first floor of an academic building.

Our mapping algorithm — especially the loop-closing method — relies
on zero-mean error, particularly in the robot’s odometry. In reality, the error
experienced by a robot is rarely zero-mean. For example, suppose the robot
travels down a long hallway with a tile floor, and then returns down a heavily
carpeted hallway. The difference in floor surface will yield biased (non-zero-
mean) odometric error. So far in our experiments however, the negative effects
of the zero-mean assumption have been minimal, even in large environments.

Overall, our simulated and real-world experiments indicate that the map-
ping algorithm closes loops correctly well over 95% of the time for non-self-
similar worlds. For additional experiments and further discussion, see [1].
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6 Conclusions and Future Work

In this paper, we have presented a topological mapping algorithm for robots
capable of only sparse, limited-range sensing. We have introduced an evi-
dential approach to the problem of “closing the loop” — recognizing when
the robot has returned to a place it has already visited — based on the
Dempster-Shafer theory of evidence. Finally, we have presented paradigms
for incorporating open spaces into topological maps: “portals” that naturally
connect narrow regions and open spaces and refinements that make “forays”
through open spaces. Our experiments, both in simulation and with a real
robot, verify the efficacy of our approach.

Our mapping approach is not without limitations. In particular, our robots
are limited in the worlds they can map. These limitations are primarily de-
pendent on the robot’s sensing deficiencies; for example, we should not expect
a robot with large odometry error to be capable of efficiently making com-
plete maps of vast open spaces. While creating precise maps of large spaces
with a sensing-limited robot may be possible, our approach favors mapping
and navigation efficiency over extensiveness.

Our approach is also limited by the capabilities of the behaviors it depends
upon. Wall- and hall-following behaviors must be capable of terminating in re-
peatable locations and handling small spacing between discontinuities. While
this is not strictly possible in a real-world implementation, our experiments
have shown that reasonably capable behaviors can be developed.

6.1 Future work

Our approach to topological mapping should transfer directly to general
polygonal worlds with a suitable wall-following behavior. We are also inter-
ested in more deeply exploring some of the fundamental questions brought
forth by the topological mapping problem:

• How are the quality of the map and a robot’s mapping ability in general
affected by sensing limitations? By the extent of sensor error? By the
complexity of the world?

• What benefits are provided by specific assumptions about the world, such
as rectilinearity or near-rectilinearity?

• How can we best use geometry to make inferences when loop-closing?
• What can we do in a curved world, with no “well-defined” features?
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