
Accepted to the 7th Intl. Symp. on Distributed Autonomous Robotic Systems (DARS 2004)

Topological Map Merging

Wesley H. Huang and Kristopher R. Beevers

Rensselaer Polytechnic Institute, Department of Computer Science
110 8th Street, Troy, New York 12180, U.S.A.
{whuang,beevek}@cs.rpi.edu

Summary. A key capability for teams of mobile robots is to cooperatively explore
and map an environment. Maps created by one robot must be merged with those
from another robot — a difficult problem when the robots do not have a common
reference frame. This problem is greatly simplified when topological maps are used
because they provide a concise description of the navigability of a space. In this
paper, we formulate an algorithm for merging two topological maps that uses aspects
of maximal subgraph matching and image registration methods. Simulated and real-
world experiments demonstrate the efficacy of our algorithm.

1 Introduction

Systems of multiple mobile robots must be able to cooperatively explore and
map an environment for applications such as urban reconnaissance, search &
rescue operations, security monitoring, and even house cleaning. In order to
create a map quickly, each robot can only explore part of the environment,
and the robots’ individual maps must be merged to form a complete map.

In this paper, we address the problem of map merging for topological maps.
Topological maps use a graph to represent possibilities for navigation through
an environment; vertices represent certain “places” in the environment and
edges represent paths (or classes of paths) between these places. Often vertices
and edges are annotated with certain metric information, such as path length
(for edges) or relative orientations of incident paths (for vertices). Typically,
vertices are junctions of hallways, and edges represent a path down a hallway
from one junction to another. Topological maps provide a concise description
of the environment specifically geared towards navigation. Our focus is on
indoor environments, so the use of topological maps is appropriate.

Two robots that have explored overlapping regions of an environment
should have topological maps that have common subgraphs with identical
structure. Solving the map merging problem is thus analogous to identify-
ing a matching between the two graphs. In general, we would expect exactly



2 Wesley H. Huang and Kristopher R. Beevers

known attributes of matched vertices, such as the degree of the vertices in
a static world, to match perfectly. However, attributes of vertices and edges
that are subject to measurement error, such as the length of an edge or the
angles between edges leaving a vertex, must only match closely.

If a robot’s topological map contains geometric information about edges
(e.g. path shape and the orientations of edges at vertices), there is enough in-
formation to estimate vertex locations with respect to the robot’s world frame.
This suggests that the map merging problem could also be solved using image
registration techniques. The most widely used algorithms for image registra-
tion are iterative closest point (icp) algorithms. An initial matching between
feature points must be provided; the algorithm first estimates a transforma-
tion between the two feature sets by minimizing the (weighted) squared error
between corresponding features. Next, the feature matching is expanded by
finding features that are close together under this transformation, and the
transformation is re-estimated. This process continues until the change in the
transformation estimate between iterations is small.

In this paper, we describe an algorithm that uses the structural aspect of
subgraph matching and the geometric aspect of image registration. We first
create hypothesized matches by pairing compatible vertices in the two maps,
and then locally grow each match using only the graph structure and ver-
tex and edge annotations. Many hypotheses can be eliminated in this phase
because of incompatibilities in the structure of the maps, or because of in-
compatible annotations (such as edge lengths that are too different). After
growing the consistent matches, we estimate geometric transformations for
each hypothesis and perform clustering in the transformation space. The best
cluster (based on size and error) is returned as the algorithm’s result, and the
transformation from that cluster is used to merge the maps.

1.1 Related work

In recent years, there has been increased interest in map-making with mul-
tiple robots. Most multi-robot mapping work has focused on the creation of
occupancy maps, e.g. [13, 10], though some work has been done on multi-
robot feature-based or topological mapping [7, 6, 4]. In particular, Konolige
et al. [11] have shown the benefits of feature-based approaches to map merg-
ing, as opposed to matching the raw sensor data of occupancy maps.

Much of the multi-robot map making and merging work assumes that all
robots in the team begin the mapping process with a common reference frame
— an assumption we do not make in this paper. One notable exception is the
approach taken by Ko et al. [10] in which robots exchange occupancy maps
and attempt to localize themselves in each others’ maps.

The work most related to ours is that of Dedeoglu and Sukhatme [4], who
presented a method for merging landmark-based maps without a common
reference frame. They estimate a transformation between two maps using a
single-vertex match found with simple heuristics, and match other vertices



Topological Map Merging 3

using this transformation. In contrast, we estimate geometric transformations
between the two maps, but rather than use these transformations to gen-
erate vertex correspondences, we compute the transformations using corre-
spondences that we find from the structure of the maps. Our use of the maps’
structure results in quicker and more effective discovery of potential matches.
Additionally, our transformations are computed from multiple-vertex matches
using well-known image registration techniques [2], rather than from single-
vertex matches.

Our work draws on ideas from the graph matching literature. In partic-
ular, the topological matching problem can be viewed as an instance of the
maximal common subgraph problem [3], and is closely related to the problems
of structural matching and error-tolerant subgraph isomorphism [14].

1.2 Assumptions

The maps to be merged must be consistent — no two vertices may repre-
sent the same “place.” This means that the robots can either recognize or
infer when they have revisited a place and thus are able to “close the loop.”
However, we do not assume that the vertices have “distinguishing” attributes,
which would make the map merging problem significantly simpler.

The robots must record enough information that map vertices can be em-
bedded in a metric space; path shapes and the angles between edges leaving
vertices are sufficient. We assume there is a known error model for measure-
ments and that, errors notwithstanding, only translation and rotation (but
no scaling) are needed to merge the maps. Our examples are from rectilinear
worlds, but the algorithm we develop will work with any topological maps.

2 Hypothesis building

The first phase of our algorithm creates hypotheses by locally growing single-
vertex matches. A hypothesis is a list of vertex and edge correspondences
between two maps; finding them is, in essence, the problem of finding all
maximal common connected subgraph matchings between the two maps.

2.1 Vertex matching

We start with a pair of compatible vertices, one from each map. Vertices
are tested for compatibility by examining their attributes: exactly known at-
tributes (e.g. vertex type) must match perfectly; inexactly known attributes
(e.g. edge lengths or orientations) must be compared with a similarity test.

It often makes sense to assume that the robots will know the degree of
vertices exactly; robots with sufficiently powerful sensing should easily be able
to determine the number of paths leading from a vertex. In dynamic worlds,



4 Wesley H. Huang and Kristopher R. Beevers

where the degree of vertices may change — e.g., due to opened or closed doors
— vertex degree cannot be treated as an exact attribute.

Relative edge orientations at a vertex are typically known with some un-
certainty, so they must be compared using a similarity test which determines
how similar two vertices must be in order to be paired.

2.2 Growing matches

We now grow the match by testing corresponding pairs of edges leaving the
paired vertices. If the edges are compatible and the vertices at the ends are
also compatible, then they are added to the match. If the edges or vertices
are incompatible, the entire match is rejected.

The vertices are tested with the same criteria and similarity tests used to
form the initial pair. Edges may also have both exactly and inexactly known
attributes. Typically they have a path length, compared with a similarity test.

Our initial hypotheses are the unique matches that survive the growing
process. We avoid generating duplicate hypotheses by keeping a table of vertex
pairings. When vertices are paired during the growth phase, the corresponding
entry is marked in the table. This entry is then ineligible as an initial pairing
of vertices. A subgraph in one map can be matched to multiple subgraphs in
the other (under separate hypotheses), but a pair of matched vertices (with
a given edge correspondence) can appear in only one hypothesis. The match-
ing/growing process is repeated until all valid vertex pairings are examined.

2.3 An example

For an example of hypothesis generation, we use two maps from a rectilin-
ear world, shown in Figure 1. The rectilinear world assumption implies that
we know exact orientations of paths leaving vertices (relative to the robot’s
coordinate frame). In the example, we also assume a static world, so vertex
degrees must match exactly. Degree two and three vertices can match only for
a single edge pairing; degree four vertices can match for four edge pairings.

To construct all unique hypotheses, we create tables as described previ-
ously. The matches are grown by adding compatible incident edges and ver-
tices. When a match is found to be inconsistent (usually due to vertex degree
mismatch), we still grow it as much as possible so that those vertex pairs can
all be marked as incompatible. This avoids regrowing the same match from a
different initial vertex pair.

3 Transform estimation & clustering

Our hypotheses now consist of maximal matched connected subgraphs. These
matchings represent a single overlapping area, but the two maps may have sev-
eral (separate) overlapping areas. In this phase of the algorithm, we consider
the geometric relationships of hypotheses.



Topological Map Merging 5

b2 b3 b6

a3 × × H1

a6 × × ×

a7 H2 × H3

Degree-2 Vertices

� � �

� � �

�

Map A

� �

�

� � �

� �

Map B

a1

a2

a4

a5

b4 b5 b7 b80◦
90◦

180◦

270◦

Map A rotation

Degree-4 Vertices

H4

×
×

H11

×
×

×
H12

H5

×
H9

H13

H6

×
H2

H14

×
×

×
×

H4

×
×
×

H7

×
H2

H11

H5

H8
×

H12

×
×

H9
H12

×
×

H2
×

H4

×
H10

H14

×
×

×
H15

×
×

H2
×

×
×

×
×

×
×

×
H12

H4

×
×
×

Fig. 1. Hypothesis generation example for two maps from a rectilinear world. All
possible single vertex matches are represented in the two tables; an “×” indicates
that there is no valid hypothesis with that vertex match (and orientation). For
example, hypothesis H1 is generated from a matching with no rotation between
vertex 3 in Map A and vertex 6 in Map B (a3–b6). There are no common edges
from these vertices, so it cannot be grown further. For a 180◦ rotation of Map A,
hypothesis H2 matches a1–b8, a2–b7, a4–b5, a5–b4, and a7–b2; this is the extent to
which it can be grown. For a 90◦ rotation of Map A, we can match a1–b7, a2–b4,
a5–b5, a4–b8, and a6–b3. Though a7–b6 should also match, the edges a5–a7 and
b5–b6 have significantly different lengths, so all these matches are marked invalid.
There are 15 hypotheses that result from these two maps.

3.1 Transform estimation

In order to estimate a geometric transform, we must first embed the vertices
of the maps in the plane. The problem of generating a consistent geometric
map from the local distance and angular measurements added to a topological
map has been addressed by several researchers, including Duckett et al. [5], Lu
and Milios [12], and Golfarelli et al. [9]. Any of these methods would suffice;
the reference frame for the vertices can be placed arbitrarily.

We can now estimate a transformation (translation and rotation) for each
hypothesis using the vertex correspondences of the hypothesis. In image regis-
tration, this would typically be done using iteratively reweighted least-squares,
where the weights help make the method robust to outliers. It is appropriate
for us to use an unweighted least squares estimation because corresponding
vertices should be close together; large error indicates that a hypothesis is
geometrically bad (despite being structurally good).



6 Wesley H. Huang and Kristopher R. Beevers

3.2 Clustering

We group hypotheses into clusters to determine which hypotheses are consis-
tent with each other. The clustering is done in the hypothesis transformation
space, for which an appropriate distance function must be used.

Clustering requires some threshold distance to determine when two trans-
forms are close enough to be compatible. This distance could be defined in
terms of the map, e.g., a fraction of the minimum edge length in the hypoth-
esis, or in terms of some aspect of the hypotheses themselves, such as metric
error. Hypotheses within the threshold distance in transformation space are
clustered together. There are a variety of techniques for clustering; we used a
simple agglomerative clustering method in our implementation.

Once we have a set of hypothesis clusters, we order these clusters in terms
of their “quality.” The quality of a hypothesis is not straightforward to de-
termine without information about the size, complexity, and self-similarity
of the environment, which could be used in assessing the distinctiveness of
the matched portions of the maps. Absent such information, we suggest the
following heuristics and methods:

• Total number of vertices is a good primary indicator of cluster quality.
Clusters containing only one or two pairs of vertices — particularly, clus-
ters with only a small number of single-match hypotheses — are generally
not significant unless the vertices are somehow unique.

• The amount of error (i.e., total squared error under the cluster transform)
is a good secondary indicator of quality.

• The number or size of hypotheses in a cluster can be used as a secondary
quality indicator. For example, a single large hypothesis is preferable to a
cluster of small hypotheses.

• There is always some tradeoff between size and quality of a cluster: a single
matched pair of vertices has no error, but generally does not constitute a
significant match.

3.3 Example continued

For rectilinear worlds, the errors in orthogonal directions are decoupled. Em-
bedding a map in the plane is thus reduced to two one-dimensional problems.
We find the maximum likelihood embedding using a simple spring model.

We estimate a transform for each hypothesis using a two-dimensional ver-
sion of the point-based rigid registration algorithm described by Fitzpatrick
et al. [8]. This involves computing the singular value decomposition of a two-
by-two covariance matrix.

Figure 2 shows the resulting clusters from our example. Because the exam-
ple is in a rectilinear world, the transform space consists of a two-dimensional
translation space for each of the four possible rotations. The quality of clusters
was determined first by number of vertices and then by total error between
vertex pairings under the cluster transform.



Topological Map Merging 7

��� ����� ������� ��	����




�

Fig. 2. Transformation spaces and example clusters for our example. The 180◦,
5-vertex cluster (from a single hypothesis) is the best match; the 0◦, 5-vertex cluster
consisting of two hypotheses is also a good match. Map A is shown in black, map
B is shown in gray, and matched vertices are circled.

4 Implementation issues

Once a hypothesis cluster has been deemed correct, it is fairly straightfor-
ward to merge the two maps. The estimates of path lengths can be updated
by combining the measurements from the two maps for corresponding edges.
The edge orientations at the corresponding vertices can be similarly merged.
Portions of one map not present in the other should be added. Appropri-
ate strategies for map storage and variations on the merging algorithm can
simplify the implementation and improve its efficiency.

4.1 Map storage

Even the best cluster choice may later turn out to be incorrect. For example,
early in the process of exploring a self-similar environment, the robots might
seem to be exploring the same area when in fact they are exploring similar
but distinct areas. We must consider how to merge and store maps so that
incorrect hypotheses can be removed without discarding the whole map. Also,
we would like to be able to merge the maps of several robots, not just two.

We can think of a robot’s map as being represented in several layers.
Layer 0 should be a robot’s own map, recording only the measurements that
robot has taken. Layer 1 is used to store other robots’ Layer 0 maps that have
been matched. Layer 2 contains maps that have been matched to Layer 1
maps (for which the matches have been computed either by another robot or
locally using another robot’s data), and so on.

This approach yields a “dependency” structure that makes it straightfor-
ward to discard hypotheses that are later determined to be incorrect, along
with all other hypotheses that depend on them. Also, it does not require much
extra storage; if necessary, upper layers can be compressed into a single layer.



8 Wesley H. Huang and Kristopher R. Beevers

4.2 Computational issues

When used online, robots may have additional information that can be used
to merge maps more quickly. For example, if two robots exchange maps only
when they are within communication range, we can start the hypothesis for-
mation by pairing vertices near both robots.

After merging maps once, two robots may later merge their maps again.
Here, an “incremental” map update can save a substantial amount of com-
putation; this is possible with minimal bookkeeping effort. The other robot’s
map, stored separately, can be updated with new or changed vertices and
edges. Updates can be used to verify and expand (or eliminate) hypotheses
from previous mergings, and to form new hypotheses. All surviving hypotheses
undergo the remainder of the merging process.

Although a map merging can be computed relatively quickly, it may be de-
sirable to distribute the computation between robots. The hypothesis building
and transform estimation steps can easily be split. The transformation clus-
tering, however, is done most straightforwardly on a single robot.

5 Results

We have implemented the map merging algorithm for rectilinear worlds, and
have tested this implementation in simulation with randomly-generated maps,
and with maps generated from real-world data. Our results indicate that the
algorithm is very effective, even for large maps with small overlap.

In our implementation, similarity of edge lengths was tested based on an
odometry error model: when one edge was within a 95% confidence bound of
the other, the edges were deemed acceptable matches. Thresholds on intra-
cluster distance in transformation space were set to be equal to 3 times the
largest mean squared (translational) error among the individual hypotheses;
in rectilinear worlds, rotational error need not be considered.

For large maps (greater than 100 vertices), there were several thou-
sand single-vertex correspondences; after the topological growth process, less
than 100 hypotheses remained. Typically, there were only one or two large hy-
potheses (more than three vertices). Even for large maps, the matching process
was quick, usually under one second on a 650 MHz Pentium 3 processor.

Clustering on the hypothesized matches worked well, but occasionally very
small (correct) matches yielded transformations that were significantly differ-
ent from the true transformation because of vertex positioning error; as such,
the matches were not added to otherwise correct clusters of hypotheses. A
potential solution is to take an “iterative” clustering approach, similar to
the iterative closest point methods used in image registration, in which new
hypotheses may be added to a cluster based on metric error under the trans-
formation of the cluster, rather than on distance in transformation space.



Topological Map Merging 9

Map A

Map B

Fig. 3. Results of merging simulated rectilinear maps. Matched vertices are shown
with large dots. The best matching occurs when map B is rotated −90◦.

Figure 3 shows the matching found for two randomly generated maps
in a maze-like world. The result is a cluster of three consistent hypotheses.
In computing the matching, there were 3918 initial vertex pairs; after the
topological growth process, there were 72 hypotheses, which were placed into
69 clusters. The entire process took 0.04 seconds. Notice that just to the left
of the leftmost (magenta) hypothesis are two vertices that should be matched
and are not, an example of the clustering problem with small hypotheses.

The algorithm was also tested with maps of a real-world indoor environ-
ment (an academic building at RPI). Though these maps were of a reasonably
large environment (approximately 12 m × 30 m), they were relatively small,
particularly in terms of complexity, when compared to our simulated tests.
With the real-world data, the robot found the correct matchings between par-
tial maps in all cases. For further details and additional experiments, see [1].

6 Conclusions

In this paper, we have presented an algorithm for merging two topological
maps. The algorithm uses the structure of the maps to find a set of hypothe-
sized matchings, and then uses the geometric transformations of hypotheses to
group them into consistent clusters. In addition, we have proposed approaches
to map storage that are effective for our hypothesis-based merging, and that
facilitate merging maps from multiple robots. Finally, we have discussed ways
to reduce the computational cost when robots re-merge updated maps.



10 Wesley H. Huang and Kristopher R. Beevers

We have demonstrated our algorithm on simulated and real-world maps. In
our experiments, even maps with minimal overlap are often merged correctly;
for those that are not, our algorithm returns a set of consistent mergings.
Maps with meaningful overlap were always merged correctly.

Acknowledgement. We would like to thank Charlene Tsai and Chuck Stewart for dis-
cussions on the relationship between image registration and topological map merg-
ing. This work was supported by the NSF through grant IIS–9983642.

References

1. K. R. Beevers. Topological mapping and map merging with sensing-limited
robots. Master’s thesis, Rensselaer Polytechnic Institute, Troy, NY, April 2004.

2. P. Besl and N. McKay. A method for registration of 3-D shapes. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 14(2):239–256, February 1992.

3. H. Bunke. On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters, 18(8):689–694, 1997.

4. G. Dedeoglu and G. S. Sukhatme. Landmark-based matching algorithm for
cooperative mapping by autonomous robots. In L. E. Parker, G. W. Bekey, and
J. Barhen, editors, Distributed Autonomous Robotic Systems 4, pages 251–260.
Springer-Verlag, 2000.

5. T. Duckett, S. Marsland, and J. Shapiro. Learning globally consistent maps by
relaxation. In IEEE Intl. Conf. on Robotics & Automation, pages 3841–3846,
2000.

6. G. Dudek, M. Jenkin, E. Milos, and D. Wilkes. Topological exploration with
multiple robots. In 7th Intl. Symp. on Robotics with Applications, 1998.

7. J. Fenwick, P. Newman, and J. Leonard. Cooperative concurrent mapping and
localization. In IEEE Intl. Conf. on Robotics & Automation, 2002.

8. J. M. Fitzpatrick, D. L. Hill, and C. R. Maurer, Jr. Image registration. In
M. Sonka and J. M. Fitzpatrick, editors, Handbook of Medical Imaging, volume
2: Medical Image Processing and Analysis, chapter 8. SPIE, 2000.

9. M. Golfarelli, D. Maio, and S. Rizzi. Elastic correction of dead-reckoning errors
in map building. In Intl. Conf. on Intelligent Robots and Systems, pages 905–
911, 1998.

10. J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai. A practical, decision-
theoretic approach to multi-robot mapping and exploration. In Intl. Conf. on
Intelligent Robots and Systems, 2003.

11. K. Konolige, D. Fox, B. Limketkai, J. Ko, and B. Stewart. Map merging for
distributed robot navigation. In Intl. Conf. on Intelligent Robots and Systems,
pages 212–217, 2003.

12. F. Lu and E. Milios. Globally consistent range scan alignment for environment
mapping. Autonomous Robots, 4(4):333–349, 1997.

13. S. Thrun. A probabilistic online mapping algorithm for teams of mobile robots.
Intl. Journal of Robotics Research, 20(5):335–363, 2001.

14. R. Wilson and E. Hancock. Structural matching by discrete relaxation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(6), June 1997.


