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Abstract

When multiple robots cooperatively explore an environment, maps
from individual robots must be merged to produce a single globally
consistent map. This is a challenging problem when the robots do not
have a common reference frame or global positioning. In this paper,
we describe an algorithm for merging embedded topological maps.
Topological maps provide a concise description of the navigability of
an environment, and, with measurements easily collected during ex-
ploration, the vertices of the map can be embedded in a metric space.
Our algorithm uses both the structure and the geometry of topolog-
ical maps to determine the best correspondence between maps with
single or multiple overlapping regions. Experiments with simulated
and real-world data demonstrate the efficacy of our algorithm.

KEYWORDS—topological mapping, map merging, multiple
robot mapping, graph matching, image registration

1. Introduction

Many applications of multiple mobile robot systems require
the ability to explore and map an environment: from house
cleaning to urban reconnaissance, search and rescue opera-
tions, and security monitoring. We would often like to use a
team of robots to accomplish this task to provide redundancy
and to reduce the amount of time for exploration. Each robot
can then only explore only part of the environment, so indi-
vidual robot maps must be merged to form a complete map.

In this paper, we describe an algorithm for merging topo-
logical maps. Topological maps (Kuipers 1978) use a graph to
represent possibilities for navigation through an environment.
Vertices represent “places” in the environment, and edges rep-
resent paths (or classes of paths) between those places. Often,
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vertices are junctions of hallways, and edges are paths along
the hallways. Topological maps provide a concise description
of the structure (or “topology”) of the environment. Since our
focus is on indoor environments, the use of topological maps
is appropriate.

Topological maps, however, typically represent more than
just the structure of the environment. Additional information,
such as the degree of vertices, the orientation of edges at ver-
tices, and other attributes, is typically recorded and stored in
annotations of the graph. With a minimal amount of metric
information (e.g., orientation of edges at each vertex and path
length for each edge), there is enough information to embed
the vertices in a metric space and thus recover the geometry
of the map.

Whereas previous approaches to topological map merging
and related problems have focused on using either map struc-
ture (e.g., Dudek et al. 1998) or map geometry (e.g., Dedeoglu
and Sukhatme 2000), our algorithm takes advantage of both.
Our use of map structure allows quick identification of poten-
tial matches (and rejection of mismatches), while the use of
map geometry enables our algorithm to directly merge maps
with multiple (disconnected) overlapping regions. Our exper-
iments have demonstrated that this algorithm can successfully
merge many different types of topological maps.

Our algorithm proceeds in two phases and is inspired by
methods from graph matching and image registration.

The first phase of our algorithm identifies hypothesized
matches, i.e., sets of vertex and edge pairs, between the two
maps. These correspond to common connected subgraphs of
the maps and reflect areas of the environment with identical
structure. Exactly known attributes of paired vertices or edges,
such as the degree of vertices in a static world, should match
perfectly. However, attributes that are subject to measurement
error, such as the length of an edge or the angles between edges
leaving a vertex, must only match closely. Thus, a hypothe-
sized match is a common submap with compatible annotations
and the same “topological” structure and local geometry.
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The second phase of our algorithm considers the global
geometry of the matches. For each hypothesis, we can esti-
mate a geometric transformation on one map to bring paired
vertices into alignment. Geometrically compatible hypothe-
ses give rise to similar transforms, so the hypotheses can be
clustered in the transformation space. The best cluster (based
on size and error) is selected, and the vertex and edge corre-
spondences from that cluster are used to merge the maps.

In the remainder of this section, we describe related work
and our assumptions, and introduce several definitions. In Sec-
tion 2 we discuss the details of forming hypothesized (struc-
tural) matches between the maps, and in Section 3 we describe
the transform estimation and clustering. We present experi-
mental results in Section 4 and discuss several extensions in
Section 5.

1.1. Related Work
In recent years, there has been increased interest in map-
making with multiple robots. While most multirobot map-
ping work has focused on the creation of occupancy grid
maps (Grabowski et al. 1999; Thrun 2001; Ko et al. 2003),
some work has been done with feature-based or topologi-
cal maps (Dedeoglu and Sukhatme 2000; Stroupe, Martin,
and Balch 2001; Fenwick, Newman, and Leonard 2002). Jen-
nings, Kirkwood-Watts, and Tanis (1998) have used individ-
ual robots to create maps from Voronoi paths, and then used
a simple distance metric to merge the maps. Dudek et al.
(1998) have created maps of a graph-like world under the as-
sumption that all robots start at the same vertex in the graph.
Konolige et al. (2003) have posed the map-merging problem
in a decision-making framework, and have shown the effi-
cacy of taking a feature-based approach to merging instead of
attempting to match occupancy data.

Much of the multirobot map-making and map-merging
work assumes that all robots in the team begin the mapping
process with a common reference frame, an assumption we
do not make in this paper. One notable exception is the ap-
proach taken by Ko et al. (2003) in which robots exchange
occupancy maps and attempt to localize themselves in each
other’s maps using a version of particle filtering.

The work most related to ours is that of Dedeoglu and
Sukhatme (2000), who have presented a method for merging
landmark-based maps without a common reference frame.
They estimated a transformation between two maps using a
single-vertex match found with simple heuristics, and paired
other vertices that are close together under this transformation.
In contrast, our algorithm creates vertex and edge pairings
using the structure of the maps and then estimates a transfor-
mation using this match. By comparing the map structure, we
can discard mismatches earlier in the algorithm, and our trans-
formations can be computed using multiple-vertex matches
instead of single-vertex matches. An earlier version of this
work appeared in Huang and Beevers (2004a).

Our approach to this problem draws from the areas of graph
matching and image registration, although there are some sig-

nificant differences in our problem domain. We discuss both
of these areas in turn.

1.1.1. Graph Matching

Graph matching (Bunke 2000) is an area that has seen an
explosion of research over the past three decades, particularly
in the pattern recognition literature (Conte et al. 2004). There
are many different problems in this area; the one most relevant
to topological map merging is the maximal common subgraph
(MCS) problem (McGregor 1982; Bunke 1997; Durand et al.
1999). In this problem, the two graphs may have annotations
on the edges and vertices, and the objective is to identify the
largest set of compatible vertex and edge pairings.

The MCS problem is a well-known NP-hard problem; how-
ever, there are some significant differences in topological map
merging that make the structural phase of our algorithm re-
quire only polynomial time. First, the edges incident to a ver-
tex in a topological map have spatial interrelationships. In the
planar case, this could be represented as the counterclock-
wise ordering of the edges about the vertex. This results in
a number of different edge pairings at a vertex that is linear
in the degree of the vertex, whereas it is exponential for the
MCS problem. Secondly, while the matched subgraph need
not be connected for the MCS problem, we are only interested
in connected subgraphs because each connected subgraph can
result in a different geometric transformation between the two
maps. The geometric compatibility of disconnected matches
is evaluated in the second phase of our algorithm.

Another relevant problem in graph matching is error-
tolerant subgraph isomorphism (Bunke and Allermann 1983).
This problem is to identify a common subgraph when there
may be missing vertices and edges. Solutions to this prob-
lem are generally evaluated in terms of the “edit distance”,
the smallest sequence of elementary graph operations (i.e.,
substitution, deletion, insertion) that transforms one subgraph
into the other. These techniques may be useful when a robot
cannot reliably detect “places” or when the environment is
dynamic, since the resulting topological map may have miss-
ing vertices and edges. For now, however, we assume that the
maps must match directly.

1.1.2. Image Registration

If the vertices of the topological maps are embedded in a
metric space and the edges discarded, then the map merging
problem becomes the same as image registration. A thorough
(but aging) survey of image registration techniques was writ-
ten by Brown (1992). Most image registration algorithms are
iterative in nature: they attempt to find transformations be-
tween image coordinate frames by repeatedly minimizing the
distances of closest-point correspondences of features.

The iterative closest point (ICP) algorithm (Besl and
McKay 1992; Chen and Medioni 1992) is the basis of the
most widely used class of image registration techniques. This
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algorithm takes an initial matching between feature points
and computes a transformation between the two feature sets
by minimizing the (weighted) squared error between corre-
sponding features. Next, the matching is expanded by find-
ing features that are close together under this transforma-
tion, and the transformation is re-estimated. This process
continues until the change in the transformation estimate be-
tween iterations is small.

Since topological maps contain structure that is relevant
for merging maps, it is not appropriate for us to simply use
the ICP algorithm. From the first phase of our algorithm, we
have matches that take this structure (and local geometric
information) into account, so we do not expand the matches;
they are already maximal matches. In the second phase of our
algorithm, a transform is estimated using a simple point-based
rigid transformation algorithm as described by Fitzpatrick,
Hill, and Maurer (2000). This is further described in Section 3.

1.2. Assumptions

We assume that the individual topological maps are consis-
tent, i.e., no two vertices represent the same “place”. This
implies that the robots can infer when they have revisited a
place and thus are able to “close the loop”. Closing loops in
topological maps is not a trivial issue, so this is an important
assumption. We have addressed the loop-closing problem in
our other work; see Beevers and Huang (2005) for an algo-
rithm that uses only odometry measurements to close loops
in two-dimensional topological maps.

The robots must be able to reliably recognize “places”
that correspond to vertices, but we do not assume that any
sensed attribute of a vertex or edge is globally unique. An en-
vironment or sensor that permits this renders the map-merging
problem (and similarly, the loop-closing problem) trivial. We
presume that the individual maps are created in the same man-
ner, so that vertices and edges in one map will appear in an-
other map in the same way if the maps overlap.

Sufficient odometric information must be available so that
the map vertices can be embedded in a metric space. In the pla-
nar case, the path transformations (distances for straight-line
paths) and the angles between edges at vertices are sufficient.
Such information is generally necessary anyway for loop-
closing in individual maps. We assume that there is a known
error model for these measurements that can be used to com-
pare them, and that, errors notwithstanding, only a translation
and rotation (but not scaling) are needed to merge maps.

Unlike most other map-merging work, we do not assume
that the robots have sufficient sensing or global knowledge to
maintain a common reference frame. This could arise in an
application when robots with no global positioning sensor are
inserted into a building at different locations.

Note that although our examples are from planar environ-
ments, our algorithm will work with topological maps em-
beddable in any metric space. For example, the addition of

a second angle attribute for edges incident to map vertices is
sufficient to extend the maps to three dimensions; these angles
can be treated as just another vertex attribute to be compared.

1.3. Definitions

In order to make our discussion more precise, we present algo-
rithm pseudo-code throughout the paper. Here, we introduce
notation and utility procedures used in the pseudo-code.

Our algorithm merges two topological maps represented as
connected graphs, A = (VA, EA) and B = (VB, EB), where
VA and VB are the vertices in the respective maps and EA
and EB are the edges. A vertex v ∈ VA, VB has exact and
inexact “attributes”, represented in vectors ηv = {ηv

1, η
v
2, . . . }

and ιv = {ιv1, ιv2, . . . }, respectively. An edge e ∈ EA, EB also
has exact and inexact attributes represented in vectors ηe and
ιe, respectively. For example, the degree of a vertex could be
an exact attribute, and the path length corresponding to an
edge would be an inexact attribute.

The values of an exact attribute of two vertices or edges
may be compared directly. The values of an inexact attribute
that is subject to error must be compared using a similarity
test. Given an error model �i[ιi], which is a pdf parametrized
by the value of the ith inexact attribute of a vertex or edge, a
similarity test SIM

(
ι
v1
i , ι

v2
i , �i

)→ {#t,#f} returns #t (true)
if the attribute values are “close” according to the error model
for the attribute, and #f (false) otherwise. The implemen-
tation of similarity tests depends on attribute properties and
error model characteristics. One approach is to use statisti-
cal significance tests. We discuss this approach for testing the
similarity of odometry measurements in Section 4.1.

In order to shorten the algorithm pseudo-code, the follow-
ing utility procedures are defined:

• INCIDENT(e, v) returns #t if edge e is incident to ver-
tex v;

• TARG(v, e), where INCIDENT(e, v) == #t, returns a
vertex v′ such that INCIDENT(e, v′) == #t (i.e. it re-
turns the “target” vertex of the edge, where the “source”
is v);

• COMPAT(x1, x2) returns #t if ∀i , η
x1
i == η

x2
i and

∀j , SIM(ι
x1
j , ι

x2
j , �j) == #t, and returns #f otherwise.

Here, x1 and x2 may be either vertices or edges.

2. Hypothesis Building

The first phase of our algorithm creates hypotheses by locally
growing single-vertex matches. A hypothesis is a list of vertex
and edge correspondences between two maps; finding them
is, in essence, the problem of finding all maximal common
connected subgraph matchings between the two maps.

The pseudo-code for the hypothesis building phase is de-
picted in Algorithm 1 (GROW-HYPOTHESES).
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Algorithm 1. GROW-HYPOTHESES(A,B)
“Grow” potential matches between two maps A and B.

1. H ← {} // valid hypotheses

2. Initialize M to the set of all single vertex pairs
(a, b, Ea,b) where a ∈ VA, b ∈ VB, COMPAT(a, b) ==
#t, and Ea,b is a set of edge matchings for edges inci-
dent to a and b.

3. while M is not empty do

4. remove an element m of M

5. P ← {m} // pairs to expand

6. Q← {} // pairs in hypothesis

7. while P is not empty do

8. remove an element p = (a, b, Ea,b) from P

9. add p to Q

10. for all (ea, eb) ∈ Ea,b do

11. Let ta = TARG(a, ea), tb = TARG(b, eb)

12. if (ta, tb, Eta,tb ) ∈ Q ∪ P then

13. continue // already have these vertices

14. if (ta, tb, Eta,tb ) ∈ M : (ea, eb) ∈ Eta,tb and
COMPAT(ea, eb)

15. remove (ta, tb, Eta,tb ) from M

16. add (ta, tb, Eta,tb ) to P

17. else

18. P ← {}, Q← {} // discard this hypothesis

19. break

20. end if

21. end for

22. end while

23. if Q �= {} then

24. add Q to H

25. end while

26. return H

2.1. Vertex Matching

We start the hypothesis building process by creating all com-
patible vertex pairings. Vertices are tested for compatibility
by examining their attributes: exactly known attributes (e.g.,
vertex type) must match perfectly; inexactly known attributes
(i.e., those subject to measurement error) must be compared
with a similarity test that takes into account the relevant error
model. In our implementation, we have used a test of statisti-
cal significance (see Section 4.1 for details).

It often makes sense to assume that the robots will know the
degree of vertices exactly; robots with sufficiently powerful
sensing should easily be able to determine the number of paths
leading from a vertex. In dynamic worlds, where the degree
of vertices may change (e.g., due to opened or closed doors)
vertex degree cannot be treated as an exact attribute.

A vertex pairing must also specify which incident edges are
to be paired together.Two vertices can be matched with several
different edge correspondences, each of which is considered
as a separate vertex pairing. The spatial relationship between
incident edges should be used to determine which (if any) edge
pairings are acceptable. In the planar case with Gaussian error,
the squared angular orientation error between paired edges
should be minimized by adjusting the relative orientation of
the vertices; if this error is too large, the edge pairing should
be rejected.

These compatible vertex pairs form the initial set of
matches between the two maps. They should be stored in a
hash table for efficient access during the growth step.

2.2. Growing matches

The single-vertex matches must next be expanded using the
structure of the maps. We pick one of the matches and test
corresponding pairs of edges leaving the paired vertices. Like
vertices, edges may have exactly known attributes, which can
be compared directly, and inexactly known attributes (such as
path length), which must be compared using a similarity test
that takes into account any available error model.

If the edges are compatible and the vertices at the ends
are also compatible, then they are added to the match. Note
that all compatible vertex pairs have already been computed,
so this simply requires looking up the vertex pair in the hash
table. If it is found, the vertices are compatible and the pair
is removed from the table so that a duplicate match will not
be regrown from that single-vertex pairing. If the edges are
incompatible (e.g., they have significantly different lengths or
orientations) or the vertices are not found in the hash table,
the entire match is rejected.

Note that an edge may have been explored in one map
but not the other. This does not constitute an incompatibility:
only edges explored in both maps are cause for rejection or
expansion of the match.

This process is repeated until the match cannot be expanded
further; the match then becomes a hypothesis, and we attempt
to grow any remaining single-vertex matches. Note that a sub-
graph in one map can be matched to multiple subgraphs in
the other (under separate hypotheses), but any pair of vertices
(with a given edge correspondence) can appear in only one
hypothesis.

2.3. An Example

For an example of hypothesis generation, we use two maps
from a simple rectilinear world, shown in Figure 1. Note that
our map-merging algorithm does not assume rectilinearity; we
use rectilinear maps just to keep the example simple so that
we may focus on illustrating the operation of the algorithm.

In this example, we also assume a static world, so
vertex degrees must match exactly. We first generated all
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Map A Map B

Hyp. Rot. Vertex correspondences
H 1 0◦ a3–b6
H 2 180◦ a7–b2, a1–b8, a2–b7, a4–b5, a5–b4
H 3 180◦ a7–b6
H 4 0◦ a1–b4, a2–b5, a4–b7, a5–b8
H 5 0◦ a1–b7, a2–b8
H 6 0◦ a1–b8
H 7 0◦ a2–b7
H 8 90◦ a2–b8
H 9 180◦ a1–b7, a4–b4
H 10 180◦ a4–b7
H 11 270◦ a1–b4, a2–b7
H 12 270◦ a1–b5, a2–b8, a4–b4, a5–b5
H 13 270◦ a1–b7
H 14 270◦ a1–b8, a4–b7
H 15 270◦ a4–b8

Fig. 1. Hypothesis generated from two maps from a rectilin-
ear world. After growing the single-vertex matches between
these two maps, there are 15 valid hypotheses remaining.
Since there are only four possible orientations in a rectilinear
world, these hypotheses consist of a rotation (of map A) and
a list of vertex correspondences.

single-vertex matchings. Degree-two vertices (which corre-
spond to a corner) produce a single match because there is only
one possible edge pairing. Degree-four vertices produce four
matches because there are four possible edge pairings. There
are no degree-three vertices in these example maps. Grow-
ing matches using Algorithm 1 produce 15 valid hypotheses,
listed in Figure 1. Figure 2 depicts the growth process for a
match that leads to a valid hypothesis and for a match that
leads to an invalid matching.

3. Transform Estimation and Clustering

Our hypotheses now consist of maximal matched connected
subgraphs. These matchings represent a single overlapping
area, but the two maps may have several (separate) overlap-
ping areas. In this phase of the algorithm, we consider the

geometric relationships of hypotheses to group consistent hy-
potheses together into a single match.

3.1. Transform Estimation

In order to estimate a geometric transform, we must first em-
bed the vertices of the maps in the plane. The problem of
generating a consistent geometric map from the local dis-
tance and angular measurements added to a topological map
has been addressed by several researchers, including Duckett,
Marsland, and Shapiro (2000), Lu and Milios (1997), and Gol-
farelli, Maio, and Rizzi (1998). Any of these methods would
suffice; the reference frame for the vertices can be placed
arbitrarily.

We can now estimate a transformation (translation and ro-
tation) for each hypothesis using the vertex correspondences
of the hypothesis. In our planar examples, we estimate trans-
forms using a two-dimensional version of the point-based
rigid registration algorithm described by Fitzpatrick, Hill, and
Maurer (2000). This algorithm constructs a two-by-two co-
variance matrix using the displacements of pairs of matched
vertices from the centroids of their respective point sets. It then
computes the singular value decomposition (SVD) of this ma-
trix. The unitary matrices from the SVD are used to find the
best rotation between the two point sets; the optimal transla-
tion is then found from the vertex centroids in each map. This
algorithm has the effect of finding the transformation between
maps that minimizes squared error between matched vertices.

3.2. Clustering

We group hypotheses into clusters to determine which hy-
potheses are consistent with each other. The clustering is per-
formed in the hypothesis transformation space, for which an
appropriate distance function must be used.

Clustering requires some threshold distance ε to determine
when two transforms are close enough to be compatible. This
distance could be picked based on the scale of the maps, or
it could be defined in terms of the cluster hypotheses; for ex-
ample, translations could be compared relative to a fraction
of the minimum edge length, and rotations could be com-
pared relative to the minimum angle between any two adjacent
edges. Hypotheses within the threshold distance in transfor-
mation space are clustered together. There are a variety of
techniques for clustering; we used a simple hierarchical ag-
glomerative clustering method in our implementation, shown
in Algorithm 2 (CLUSTER-HYPOTHESES).

A naive implementation of this clustering algorithm re-
quires O(n3) time, where n is the number of hypotheses. A
more efficient implementation that builds a similarity matrix
and updates it at each cluster joining needs only O(n2 log n)

time but requires O(n2) memory (Day and Edelsbrunner
1984).
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−→ −→ −→ −→ =⇒ H2

−→ −→ −→ −→ =⇒ Mismatch

Fig. 2. Growing matches for the example maps from Figure 1. Map A (solid) is transformed to align the first paired vertex with
its match in map B (gray); circles indicate paired vertices. The match is expanded by comparing corresponding pairs of edges
and adding vertex pairs until the match is maximal (top example, which results in Hypothesis 2) or until the match is shown
to be inconsistent (bottom example, because of the large difference between length of edges a5–a7 and b5–b6). Note, for the
bottom example, that once the a7–b6 mismatch is discovered, the four circled vertex pairs will be discarded. The topmost
pair of vertices (a6–b3) is still a valid pairing, but will be rejected upon expansion because the a5–b5 pair has already been
discarded.

Algorithm 2. CLUSTER-HYPOTHESES(H )
Cluster a set of hypotheses found by GROW-HYPOTHESES.

1. for all h ∈ H do
2. Compute t[h] (hypothesis transform) using

SVD-based registration
3. end for
4. Let C = H

5. repeat
6. Find ci, cj such that d = minci ,cj∈C ||t[ci] − t[cj ]||
7. if d < ε then
8. C ← C − {ci, cj }
9. C ← C ∪ {ci ∪ cj }

10. Compute t[{ci ∪ cj }]
11. end if
12. until d ≥ ε

13. return C

Algorithm 3. PICK-BEST-CLUSTER(C)
Choose the “best” cluster, based on application-specific
heuristics, from the set of clusters C found by CLUSTER-

HYPOTHESES. This specific implementation was used for
matching two-dimensional planar topological maps.

1. v∗ ← maxx∈C
∑

h∈x |h| // most vertices
2. B ← {

c ∈ C : ∑
h∈c |h| = v∗

}

3. ε∗ ← minx∈B
∑

h∈x
∑

(a,b)∈h ||a − b|| // smallest error

4. B ← {
c ∈ B : ∑

h∈c
∑

(a,b)∈h ||a − b|| = ε∗
}

5. h∗ = minx∈B |x| // fewest hypotheses
6. B ← {c ∈ B : |c| = h∗}
7. if |B| == 1 then
8. return c ∈ B

9. else
10. return an arbitrarily chosen c ∈ B

11. end if

Algorithm 4. MERGE(A,B)
Find the best match between two maps A and B.

1. H ← GROW-HYPOTHESES(A,B)
2. Embed A and B in Rn

3. C ← CLUSTER-HYPOTHESES(H )
4. c← PICK-BEST-CLUSTER(C)
5. if c is too small or has large error then
6. return failure
7. Using vertex/edge correspondences in c, merge A, B.
8. return the merged map

3.3. Choosing a Cluster

Once we have a set of hypothesis clusters, we order these
clusters in terms of their “quality”. The quality of a hypothe-
sis cluster is not straightforward to determine without infor-
mation about the size, complexity, and self-similarity of the
environment: information that could be used in assessing the
distinctiveness of the matched portions of the maps. In gen-
eral, whether such information is available depends on a priori
knowledge specific to the application being considered.

Absent such information, we suggest the following heuris-
tics, which have proven successful in our experiments with
two-dimensional topological map merging.

• The total number of vertices is a good primary indicator
of cluster quality.

• The amount of error (i.e., total squared error between
matched vertices under the cluster transform) is a good
secondary indicator of quality.

• The number or size of hypotheses in a cluster can be
used as a secondary quality indicator. All other things
being equal, a single large hypothesis is preferable to a
cluster of small hypotheses since it is also known to be
structurally consistent.
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Example clusters

Hypotheses in
transform
space

0o 90o 180o 270o

y

x

Fig. 3. The hypotheses from our example clustered in the transformation space. Since these maps are from a rectilinear
world, the transformation space consists of a translation space for each of the four rotations, shown on the bottom row. One
cluster from each translation space is shown in the top row; map A is shown in black, map B is shown in gray, and matched
vertices are circled. The 180◦, five-vertex cluster (from the single hypothesis H2) is the best match; the 0◦, five-vertex cluster
consisting of two hypotheses (H1 and H4) is the second best match.

Our implementation of the algorithm for two-dimensional
topological maps used the above heuristics. It is described
in Algorithm 3 (PICK-BEST-CLUSTER).

We now have all the tools necessary for merging two topo-
logical maps; the complete map merging algorithm is shown
in Algorithm 4 (MERGE). Note that there is always some trade-
off between size and quality of a cluster: a single matched pair
of vertices has no error, but generally does not constitute a sig-
nificant match. In general, clusters containing only one or two
pairs of vertices (especially clusters with only a small num-
ber of single-match hypotheses) are not meaningful unless the
vertices are somehow unique. If the best cluster is very small
or has large error, the merging algorithm should treat this as
failure to find a match.

3.4. Example Continued

To continue our example, we first embed the maps using a
version of the relaxation algorithm by Duckett, Marsland, and
Shapiro (2000), adapted to planar maps. This algorithm iter-
atively adjusts the locations of map vertices using a spring
model, moving them to where “their neighbors think they
should be” based on odometry information. This approach
has been shown to converge to a consistent, globally optimal
solution.

Figure 3 shows the hypothesis clusters for our example.
Because this example is in a rectilinear world, the transfor-
mation space consists of a two-dimensional translation space
for each of the four possible rotations. The quality of clusters
was determined first by number of vertices and then by total
error between vertex pairings under the cluster transform.

4. Results

We have implemented the map-merging algorithm for arbi-
trary two-dimensional topological maps, and have tested this
implementation with a variety of maps. Our results indicate
that the algorithm is very effective, even for large maps with
small overlap. Experimentally, we have found that the algo-
rithm even performs well when the hypothesis formation con-
siders only the structure of the maps (and not local geometry
or other attributes).

4.1. Implementation Notes

Our experiments assume the robot is able to determine the de-
gree of a map vertex after visiting it. In our figures, a “stub”
edge is drawn if the robot detected a path but has not yet ex-
plored it. Two vertices are considered potential initial matches
if they have the same degree and the incident edges are rea-
sonably aligned. The number of possible correspondences be-
tween a pair of vertices of the same degree is thus at most equal
to that degree.

In our implementation, similarity of edge lengths was
tested based on a Gaussian odometry error model. A statisti-
cal significance test was used to determine the likelihood that
two length measurements were taken from the same edge. This
was done by computing the z-score of the measurements

z2 =
∑

i

(�i − �̂ )2

σ 2
(1)

where li are the edge measurements, �̂ is the estimate of the
edge length, and σ 2 is the variance from the error model.
The z-score follows a χ 2 distribution, which can be used in
computing the desired likelihood.
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Map A

Map B
Fig. 4. Merged maps from a simulated maze environment
shown overlaid on the maze with paired vertices circled.
This match corresponds to a cluster of three hypotheses; the
associated transform rotates map B by approximately −90◦.

Edge pairings were rejected if the computed likelihood was
small. In our implementation, we used a very conservative
threshold, rejecting edge pairings only if it was more than
99% certain that the measurements were not from the same
edge. The threshold on intracluster translational distance in
transformation space was fixed at 0.5 m, and the threshold on
rotational distance was fixed at π/8.

4.2. Map Generation and Merging

Map merging was performed on maps created by simulated
exploration of maze-like worlds, maps generated using ran-
dom vertex placement, hand-made maps, and real-world data.

4.2.1. Maze Maps

The first map generation method creates large random maze-
like worlds (with loops) on a grid. It then generates a partial
map of the world for each robot by picking a random start
cell and performing a breadth-first search to a specified depth,
using a simple “hall-following behavior”.Although the mazes
are rectilinear in nature, the maps are not because of error. (No
rectilinearity assumption is made by the robot as it makes its
map.)

Error is introduced into the partial maps by randomly per-
turbing cell centers according to a Gaussian distribution with
configurable standard deviation. The vertices of each par-
tial map are perturbed independently. The resulting error ap-
proximates error in locating vertices of the topological map.
Maps generated with this method are immediately embed-
dable in metric space since their edge length measurements are
consistent.

Figure 4 shows two maps from a random maze environ-
ment and a merged map overlaid on the maze. The two maps
overlap in several structurally disconnected places; the final

Fig. 5. Two merged random planar maps. The best cluster
consists of two hypotheses.

result of the matching process is a cluster of three consistent
hypotheses. Note that there is another small, two-vertex match
that appears to be consistent with this cluster, just to the left of
the leftmost highlighted hypothesis. A conservative threshold
on intracluster distance (in transformation space) prevented it
from joining the other three hypotheses in the best cluster.

4.2.2. Random Planar Maps

This method first creates an embedded graph by randomly
placing vertices in the plane. These vertices are then connected
randomly, with bias toward connecting nearby vertices, while
ensuring that the map remains planar by disallowing edge in-
tersections. Individual robot maps are created by picking a
random start vertex and performing breadth-first exploration
until a specified number of vertices have been visited. During
this exploration, edge lengths in the robot maps are perturbed
with Gaussian error. Maps produced in this fashion must be
embedded prior to merging since they are not metrically con-
sistent.

Figure 5 shows two merged random planar maps. This type
of map was used for much of the performance testing of the
map merging algorithm.

4.2.3. Hand-generated Maps

A few hand-generated maps were created to test specific sit-
uations. These maps tended to be more structured than the
random planar maps but less so than the maze maps.

Figure 6 shows a merging between two hand-generated
maps. A complete map of an office building-like environment
was created by hand, and the individual maps were gener-
ated by simulated exploration. Structurally, the environment
is fairly self-similar in nature. The best cluster of hypothesized
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Fig. 6. Merged maps from a hand-generated map of an office
building-like environment.

Fig. 7. Plan of the first floor hallways and lounge of the
Amos Eaton building at Rensselaer Polytechnic Institute.
The dimensions are approximately 12× 30 m2.

matchings between the two partial maps consists of four hy-
potheses, two of which are single vertex hypotheses. Note that
once again, in the bottom left of the matched maps is a pair
of vertices whose pairing is consistent with the cluster, but is
not included because of error in the maps.

4.2.4. Real-world Maps

Our real-world data come from a small mobile robot explor-
ing the hallways of the first floor of an academic building,
the Amos Eaton building at Rensselaer Polytechnic Institute,
shown in Figure 7. A topological map of the building was
created using a wall-following behavior, where vertices in
the map are “well-defined” corners of the walls in the envi-
ronment. For complete details of our robot hardware and the

mapping algorithm, see Huang and Beevers (2004b).
The complete map was split into two separate maps, and

artificial error was introduced into the overlapping parts of
the map by randomly perturbing vertices, in similar fashion
to the methods used in creating maze maps. Figure 8 shows
merged maps from two pairs of maps with different amounts
of overlap between the maps.

4.3. Performance

It is relatively straightforward to determine the theoretical
computational complexity of our map-merging algorithm.
The growth phase of the algorithm must process all single-
vertex matches. There are s = O(|VA||VB|d) such matches,
where d is the maximum degree of the vertices in the maps.
The running time of the growth phase is thus O(s). If we as-
sume that d is a constant and that each map has n vertices,
then s = O(n2) which is also the running time of the growth
phase.

In the worst case, there can be m = O(s) valid hypotheses
after the growth phase that must be clustered.An efficient clus-
tering implementation on m hypotheses requires O(m2 log m)

time, so the running time of the worst case is dominated by
the clustering phase which takes time O(n4 log n).

However, in our experiments we found that the number of
valid hypotheses remaining after the growth phase is generally
quite small. Figure 9 shows the results of experiments using
random planar maps. Although the number of single-vertex
pairings grew quadratically with the number of vertices in
the maps, the number of valid hypotheses was approximately
linear. If the number of valid hypotheses that must be clus-
tered, m, is O(n), then the running time of the clustering is
O(n2 log n). However, we note that m � n, so in practice,
the running time of the algorithm is generally dominated by
the growth phase which is O(n2).

4.3.1. Statistics and Discussion

Even for very large maps (300 vertices each) with consider-
able overlap, the matching process was quick, taking less than
0.5 s on a 650 MHz Pentium 3 processor.

Table 1 reports statistics from merging the example maps
shown in Figures 4–8. Note that with the real-world data (Fig-
ure 8), there are very few remaining hypotheses after the struc-
tural growth phase of the algorithm. To some extent this is
due to the relatively small sizes of the maps. In part, though,
the small number of hypotheses occurs because most real-
world environments present few regions with structural self-
similarity for maps with meaningful overlap; also, there are
typically many structurally distinctive features in real-world
environments.

The maze maps were the most self-similar due to the under-
lying rectilinear grid of the maze. Despite the self-similarity,
our map-merging algorithm performs well on these maps in
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(a) (b)

Fig. 8. Matchings between partial maps of the Amos Eaton building at Rensselaer Polytechnic Institute. Matched vertices
are the large light-shaded dots. (a) A matching for partial maps with relatively large overlap; (b) a matching for maps with a
smaller overlap. In both cases, the correct matching is found.

Table 1. Example Merging Statistics

Statistic Figure 4 Figure 5 Figure 6 Figure 8(a) Figure 8(b)

Size (map 1/map 2 vertices) 97/91 53/53 70/70 39/36 28/27
Single-vertex correspondences 3918 2497 2011 708 378
Hypotheses after growth 72 85 14 3 4
Clusters 69 83 10 3 4
Best cluster (hypotheses/vertices) 3/16 2/19 4/13 1/25 1/5
Running time (s) 0.04 0.02 0.02 0.01 < 0.01
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Fig. 9. For random planar maps of varying size: (a) number of
single-vertex pairings (before growth), which is quadratic, as
expected; (b) number of remaining hypotheses (after growth),
which is approximately linear. Each data point represents the
average of 100 runs for different partial maps that have at least
10% overlap.

most cases, even when the maps are large and have small
overlap.

We conducted more extensive tests of our algorithm using
random planar maps. Since the run-times were all reason-
ably short, we only collected statistics on whether the algo-
rithm merges the maps correctly. Table 2 shows our results.
In the first set of tests, the degree of overlap between the two
maps was varied; the algorithm showed very little variation
in performance with different amounts of overlap, including
the case of zero overlap in which the algorithm concludes that
there is no meaningful match between the maps. In these tests,
the algorithm was given an accurate model of the error.

A second set of tests varied the amount of noise added
to edge lengths in the maps while leaving the merging algo-
rithm’s error model unchanged. Noise in the maps is generated
by perturbing edge lengths according to a Gaussian distribu-
tion with standard deviation equal to some percentage of the
true edge length, giving longer edges more error than shorter
edges. In this set of tests, the map noise was generated with a
standard deviation varied from 1% to 11% of the edge length
(the “map σ%” in Table 2), while the merging algorithm as-
sumed 5%.

The algorithm performed well when there was less error
than assumed; although some incorrect edge matchings were
accepted, topological comparison was generally sufficient to
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Table 2. Map Merging Statistics (1000 Runs for Each
Trial)

Overlap % correct Map σ% % correct

0% 99.2% 1% 99.0%
2% 99.1% 3% 99.5%
4% 99.6% 5% 99.6%
6% 99.4% 7% 91.9%
8% 99.2% 9% 36.5%
10% 99.3% 11% 12.6%
12% 99.3%

reject incorrect matches. In some circumstances, matches that
are topologically correct but metrically incorrect might be ac-
cepted if measurement error is significantly overestimated.
When there was more error in the map than assumed, the algo-
rithm performed poorly. At 7%, the algorithm was still correct
in 91.9% of the tests, but performance declined sharply with
more error. Under these circumstances, a correct hypothesis is
often rejected because corresponding edges or vertices appear
too different under the assumed error model. For this reason,
it is best to use conservative error estimates, assuming greater
measurement error than expected.

4.4. Structure-only Hypothesis Formation

When the environment is “structurally rich”, it is possible
to entirely disregard local geometric information (e.g., edge
lengths) in the hypothesis formation phase of our algorithm,
thus avoiding the need for an error model.

We repeated the two sets of tests on random planar maps
with a modified version of our algorithm that does not perform
a similarity test on edge lengths or relative edge orientations;
the results are shown in Table 3. The performance of the al-
gorithm is comparable to the full version of the algorithm but
without the performance reduction when the error is larger
than assumed.

The trade-off for not using metric information during the
hypothesis formation phase is that fewer bad hypotheses are
rejected. Since clustering is the most expensive part of our
algorithm, this could lead to significantly longer computation
times. However, in many real-world situations, different parts
of the environment are structurally unique enough that this can
be a viable trade-off. For environments that have significant
structural self-similarity, such as our simulated maze envi-
ronments, this approach is not so effective; the use of metric
information is necessary to distinguish between structurally
similar parts of the environment.

4.5. Clustering and Transformation Estimation

Clustering on the hypothesized matches worked well, but
occasionally very small (correct) matches yielded transforma-
tions that were significantly different from the true transfor-

Table 3. Structure-only Growth Map Merging Statistics
(200 Runs for Each Trial)

Overlap % correct Map σ% % correct

0% 99.0% 1% 99.5%
2% 98.5% 3% 98.5%
4% 99.0% 5% 99.5%
6% 99.5% 7% 99.0%
8% 98.0% 9% 98.5%

10% 99.0% 11% 99.5%
12% 99.0%

mation because of vertex detection error; as such, the matches
were not added to otherwise correct clusters of hypotheses.
In Section 5.3 we discuss a solution to this problem.

The estimated geometric transformations for correct clus-
ters sometimes introduce significant “skew” into the merged
map because of inaccuracy in the transformation estimates.
The skew is largest for maps with small overlap; maps with
large overlap provide more data for use in transform estima-
tion. Note that estimated transformations can be improved as
individual robots expand their own maps and compare their
new data with the merged map.

5. Extensions

As described, our map-merging algorithm works well and is
reasonably efficient. In practice, there are several ways it could
be extended to be more efficient or perform better in particular
circumstances. Here, we discuss techniques for map merging
and storage, incremental updates, and improved clustering.

5.1. Map Merging and Storage

Once a hypothesis cluster has been deemed correct, it is fairly
straightforward to merge (or “flatten”) the two maps into a
single map. The estimates of path lengths can be updated by
combining the measurements from the two maps for corre-
sponding edges. The edge orientations at the corresponding
vertices can be similarly merged. Portions of one map not
present in the other should be added.

However, since even the best cluster choice may later turn
out to be incorrect, it is useful to store and merge maps so that
incorrect hypotheses can be removed without discarding the
whole map. A simple solution is to store the maps from each
robot separately, either computing a separate merged map, or
computing merged measurements as needed and caching val-
ues as memory permits. Should a hypothesis later be found
incorrect, the merged map can be recomputed or the cached
values marked invalid. This approach extends to the case of
merging maps with multiple robots, but a more complex de-
pendency tree structure arises that can be dealt with using
simple bookkeeping.
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5.2. Incremental Updates

After merging maps once, two robots may later merge their
maps again; an incremental update can save a substantial
amount of computation. This is possible with minimal book-
keeping: each robot must maintain time stamps so that only
new and modified vertices and edges (since the last update)
are exchanged.

The computational savings depends on the amount of in-
formation retained from the original map merging. At one
extreme, all hypotheses and cluster information are retained;
at the other, only the best cluster of hypotheses is kept. In
between, we might keep the hypotheses from some number
of the best clusters.

Briefly, the steps for an incremental update are as follows.

1. Discard old hypotheses invalidated by incompatibilities
in the updated metric information for corresponding
vertices or edges.

2. Extend existing hypotheses from new and modified
edges incident to the hypothesis.

3. Create and grow hypotheses from new and modified
vertices. To update only existing clusters, hypotheses
could be grown only from new vertex pairings with
transforms geometrically close to that of an existing
cluster.

4. Recluster the hypotheses after removing modified hy-
potheses from their previous clusters.

In the worst case, when performing every computation
described above, the incremental update is computationally
equivalent to the basic matching algorithm. However, in many
cases, one or two hypothesis clusters are clearly superior to
all others. Expanding only hypotheses in these clusters and
not growing new hypotheses can further reduce computation;
this computation is linear in the number of modified and new
vertices and edges. Note that even if other hypotheses are not
updated, they can be updated at a later time if necessary; for
example, if the previous best hypotheses are rejected during
an update.

5.3. Iterative Reclustering

A problem that occasionally occurs when merging maps with
multiple overlapping regions (multiple correct hypotheses)
is that, because of error in the maps, correct hypotheses are
sometimes not included in the best cluster. Most often, this
occurs with small hypotheses of one or two vertices, where
noise can lead to transformation estimates that are signifi-
cantly different from the true transformation.

A solution is to take an “iterative” clustering approach,
similar to the ICP methods used in image registration. After
the initial clustering, new hypotheses may be added to a clus-
ter based on metric error between paired vertices under the

cluster transformation, rather than on distance in transforma-
tion space. This process can be repeated (adding hypotheses
and re-estimating cluster transforms) until no cluster changes
occur.

6. Conclusions

In this paper, we have presented an algorithm for merging
two topological maps. The algorithm uses the structure of the
maps to find a set of hypothesized matchings, and then uses the
geometric transformations of hypotheses to group them into
consistent clusters. In addition, we have proposed extensions
to the algorithm that improve the efficiency of practical im-
plementations. These extensions focus on strategies for map
storage, incremental map updates, and clustering that reduce
the computational cost of map merging and can improve the
results.

We have demonstrated our algorithm on simulated and
real-world maps. The algorithm is most sensitive to discrep-
ancies between the error model used in merging and the true
error in the maps; one should be careful not to underestimate
the amount of error. Overestimating the error reduces the effi-
ciency of the algorithm but guards against discarding correct
matches. The algorithm is not particularly sensitive to the size
of overlap between maps being merged. Maps with mean-
ingful overlap (more than one or two vertices) were merged
correctly more than 99% of the time as long as the error was
not underestimated. In our real-world tests, maps were always
merged properly.

At present, the merging algorithm assumes maps are made
in static environments. Our future work will extend the algo-
rithm to handle quasi-static or dynamic environments, which
should improve its applicability to real-world situations. The
issue of dynamic environments is also related to the problem
of structural errors and inconsistencies in the maps; detect-
ing and resolving these situations is necessary, since they are
likely to occur in sufficiently complex environments.
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