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Topological Simultaneous Localization and Mapping
(SLAM): Toward Exact Localization Without

Explicit Localization
Howie Choset, Member, IEEE,and Keiji Nagatani, Member, IEEE

Abstract—One of the critical components of mapping an
unknown environment is the robot’s ability to locate itself on
a partially explored map. This becomes challenging when the
robot experiences positioning error, does not have an external
positioning device, nor the luxury of engineered landmarks
placed in its free space. This paper presents a new method for
simultaneous localization and mapping that exploits the topology
of the robot’s free space to localize the robot on a partially
constructed map. The topology of the environment is encoded in
a topological map; the particular topological map used in this
paper is the generalized Voronoi graph (GVG), which also encodes
some metric information about the robot’s environment, as well.
In this paper, we present the low-level control laws that generate
the GVG edges and nodes, thereby allowing for exploration of
an unknown space. With these prescribed control laws, the GVG
(or other topological map) can be viewed as an arbitrator for a
hybrid control system that determines when to invoke a particular
low-level controller from a set of controllers all working toward
the high-level capability of mobile robot exploration. The main
contribution, however, is using the graph structure of the GVG,
via a graph matching process, to localize the robot. Experimental
results verify the described work.

Index Terms—Exploration, localization, mapping, mobile
robots, motion planning, tologoical maps, Voronoi diagrams.

I. INTRODUCTION

SENSOR-BASED exploration enables a robot to explore an
unknown environment and build a map of that environment.

A critical component of this task is the robot’s ability to ascer-
tain its location in the partially explored map or to determine
that it has entered new territory. Naively, one can determine the

coordinates of the robot using dead-reckoning, a process
that determines the robot’s location by integrating data from
wheel encoders that count the number of wheel rotations (or
fractional rotations). Dead-reckoning fails to accurately posi-
tion the robot for many reasons, including wheel slippage. If

Manuscript received January 4, 2000; revised October 23, 2000. This paper
was recommended for publication by Associate Editor L. Kavraki and Editor
A. De Luca upon evaluation of the reviewers’ comments. This work was sup-
ported by T. McMullen at ONR under Grant 97PR06977 and H. Moraff, J. Xiao,
L. Reeker, and E. P. Glinert at NSF under Grant IRI-9702768. This paper was
presented in part at the International Conference on Robotics and Automation,
Leuven, Belgium, 1998.

H. Choset is with the Department of Mechanical Engineering and
Robotics, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
choset@cs.cmu.edu).

K. Nagatani was with the Department of Mechanical Engineering and
Robotics, Carnegie Mellon University, Pittsburgh, PA 15213 USA. He is
now with the Man–Machine System Laboratory, Department of System
Engineering, Okayama University, Okayama 700-8530, Japan.

Publisher Item Identifier S 1042-296X(01)05570-7.

Fig. 1. The GVG where the symbols (nodes) are labeled 1–10.

the robot slips, the wheel rotation does not correspond to the
robot’s motion and thus encoder data, which reflect the state
of the wheel rotation, does not reflect the robot’s net motion,
thereby causing positioning error. A global positioning systems
(GPS) and inertial systems offer an alternative to dead-reck-
oning, but have their drawbacks as well. Finally, landmarks with
known locations can be deployed in the environment, but the
task described in this paper considers environments where their
geometry is completely unknowna priori. We do assume, how-
ever, that the unknown environment is static, planar, and that our
range sensors have sufficient range.

All robots that do not use preplaced landmarks or GPS must
employ a localization algorithm while mapping an unknown
space, hence the term simultaneous localization and mapping,
first coined by Leonard and Durrant-Whyte [16], [25]. This
paper takes a topological approach to SLAM. It is our belief
that the topological and geometric structure of free space induce
a natural hierarchy of symbols and connections among these
symbols that represent free space. At a high level, a topological
map [14] serves as an example of symbols and connections
between them. For Kuipers, the symbols aredistinct places,
which are local maxima of the distance to nearby obstacles,
and the connections are the graph edges that link distinct
places. For an indoor office-like environments, junctions and
termination points of hallways represent symbols while the
hallways themselves are the connections. For the generalized
Voronoi graph (GVG) [21]; [7] (defined in Section II-A), the
Voronoi vertices (we call them meet points) are the symbols
while the edges form connections (Fig. 1).
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The connections of a high level representation can be dis-
cretized into a sequence of symbols with their corresponding
set of connections. Leonard and Durrant-Whyte’s approach to
SLAM is an excellent example [16], [25]. Their method uses
sensor information to define “features” and the relation among
them to direct a robot experiencing positioning error. Using a
Kalman filter approach to determine the “best” correlation of
features, the robot navigates similarly to a sailor using stars to
navigate a ship at night. Through the proper understanding of
the robot’s relationship to the features, the robot can maintain
an accurate estimate of its position while moving through the
environment using the features as low-level symbols that guide
the robot from one high-level symbol to the next.

At a low level, the robot’s environment can be modeled by
a local map such as a fine array of pixels [20]; [12]. Thrun
et al. [27] have been incredibly successful in demonstrating
their probabilistic approach in museum environments using
a grid-map representation. It is the belief of the authors that
Thrun’s main contribution is how to process a local map,
whether it be topological or a grid, not the local map itself.
Our contribution presented in this paper is to reduce the SLAM
problem to a graph matching problem at the topological scale,
not the graph matching itself.

Finally, defining the symbols and their connections is not
enough. Stable well-defined control laws must ensure that the
robot can identify (and converge onto if necessary) a symbol lo-
cation while at the same time move from symbol to symbol, i.e.,
traverse an edge. Although the philosophy of this work is gen-
eral to other topological maps, the map used in this paper is the
GVG, which is a map embedded in robot’s free space and cap-
tures the topologically salient features of the free space. With
the GVG the robot can plan a path between any two points in a
static environment by first planning a path onto the GVG, then
along the GVG, and finally from the GVG to the goal. Thus,
knowing the GVG is equivalent to knowing the free space and
constructing the GVG is akin to exploring the free space.

The GVG can be defined in an arbitrarily dimensioned Eu-
clidean space, but this paper stresses the planar version. We
present in this paper well-defined control laws that generate
GVG edges using line-of-sight range data. In deriving these con-
trol laws, we assume that the range and azimuth resolution of
the sensors are adequate to capture the structure of the robot’s
environment. Finally, we are assuming that the obstacles in our
environment are planar extrusions into three-dimensions, i.e.,
the obstacles are at the correct height for the sensors. With the
control laws, the GVG is not only a representation of free space
but it also forms a basis for exploring free space.

This paper presents some experimental results on how the
robot can incrementally construct the GVG in an unknown
space. Critical to this task is the robot’s ability to locate itself
on a partially constructed GVG. Although the robot locates
itself (topologically) on the GVG, it never needs to determine
its coordinates (hence, the title of this paper). The robot
can propagate the coordinates of each point on the GVG from
the known location of one point, such as the start point, which
can be specified to be .

In this paper, we first refer to prior work which has influenced
the authors’ thinking. Then, we define the GVG and prescribe

the control laws to construct it. Incrementally constructing the
GVG is not enough because of dead-reckoning error, as will be
shown by example. We then introduce a the following three-
tiered approach to localization: zero dimensional (using sensor
signatures of the nodes); one dimensional (intentionally fol-
lowing a sequence of edges to a desired node); and two di-
mensional (handling the situation where the robot accidentally
re-encounters an already-visited node). Finally, we discuss the
tradeoffs of this approach and future work.

II. RELATION TO PRIOR WORK

This work draws from two areas: sensor-based planning and
localization. Although both of these fields are vast, we only dis-
cuss papers that have influenced our thinking.

A. Sensor-Based Planning and Roadmaps

Much of the previous work in sensor-based planning is
heuristic and is limited to the plane. One class of heuristic
algorithms employs a behavior-based approach in which the
robot is armed with a simple set of behaviors (e.g., following
a wall) [4]. Another heuristic approach involves discretizing
a planar world into pixels of some resolution. Typically, this
approach handles errors in sonar sensing readings quite well
by assigning each pixel a value indicating the likelihood
that it overlaps an obstacle [20]; [2]. Many heuristics exist
for planning with the discretized map. Many behavior-based
heuristics are sometimes termed asreactive controlin that low
level inputs directly affect the high level behavioral outcomes
for the robot. Strong experimental results indicate the utility
of these approaches, and thus these algorithms may provide a
future basis for complete sensor-based planners. Unfortunately,
these approaches currently neither afford proofs of correctness
that guarantee a path can be found, nor offer well-established
thresholds for when these heuristic algorithms fail. One of
the goals of the work presented here is to demonstrate how
low level inputs can direct a robot to construct a high-level
representation: a topological map.

We seek to adapt the structure of a provably correct classical
motion planning scheme to a sensor-based implementation.
For example, Lumelsky’s “bug” algorithm [19] proves that a
robot using on-line information can plan a path to the goal.
This method, however, does not yield a map of an unknown
space. Our approach is based on a roadmap [5], a one-dimen-
sional subset of a robot’s free space, which captures all of its
important topological properties. A roadmap has the following
properties:accessibility; connectivity; anddepartability. These
properties imply that the planner can construct a path between
any two points in a connected component of the robot’s free
space by first finding a path onto the roadmap (accessibility),
traversing the roadmap to the vicinity of the goal (connectivity),
and then constructing a path from the roadmap to the goal
(departability). If the robot can incrementally construct the
roadmap, then it has in essence explored its free space because
the robot can always use the roadmap to plan future excursions
into the free space.

Already, the motion planning field has produced many
roadmaps: silhouette methods [5], Voronoi diagrams [21],
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visibility graphs [15], etc. (see [15] for a survey of roadmaps).
The roadmap used in this work is the GVG [7], which is the
one-dimensional set of points equidistant toobstacles in
dimensions. In the plane, the GVG is simply thegeneralized
Voronoi diagram, which is the set of points equidistant to two
obstacles [21]. In a three-dimensional Euclidean space, the
GVG is the one-dimensional set of points equidistant to three
obstacles.

Rao [22] achieves exploration by incrementally constructing
the planar GVG in a two-dimensional static polygonal envi-
ronment. Choset and Burdick [6] also describe a method to
construct the GVG in a static -dimensional environment, but
their approach does not require obstacles to be polygonal, poly-
hedral, nor convex, which are assumptions most motion plan-
ners require. Both methods assume that the robot only uses
line-of-sight information.

Both Rao’s and Choset and Burdick’s methods also assume
that the robot is equipped with a 360field-of-view high az-
imuth infinite range sensor that detects nearby obstacles. They
do not consider how real range readings can be integrated into
a control law to direct a mobile robot. In this paper, we present
control laws that take low level sensor information and then di-
rects the robot to follow the GVG edges without knowing the
GVG ahead of time. This has the affect of incrementally con-
structing the GVG. Here, low level reactive-style control has a
direct affect on high level behavior of the robot whichguaran-
teesthat the robot explores an unknown space. This control law
works well in small environments with a mobile robot equipped
with a ring of sonar sensors [9]. Unfortunately the control laws,
by themselves, are not enough for deploying a robot in large
environments because of errors in encoder readings. The main
contribution of this paper is to use the topology encoded in the
GVG to overcome these errors and to localize the robot.

B. Localization

Localization is a major area of mobile robotics that has
received increased attention over the past decade. Again, the
literature in this field is vast, so only work which has influenced
this paper’s results are mentioned. See [3] for a complete
overview of current localization techniques. Luet al. [17], [18],
[13] use gradient ascent to update various location estimates
forward and backward in time. As a result, this approach has
led to significantly larger maps that are more accurate than
previous approaches, but is still limited to situations with
bounded odometric error. Shatkay and Kaelbling [24] proposed
an approach that uses probabilistic representations, along
with the well-known Baum–Welch algorithm for efficient
estimation. Their approach is similar in nature to the one
described by Thrun [27], in that they both employ probabilistic
representations and both use the Baum–Welch algorithm.
However, the method in [24] does not consider orientation
dead-reckoning error.

Thrun has recently completed a localization approach that
has been successfully verified in very large environments on
a mobile robot where a map is knowna priori or the robot
is driven (currently by an external agent) to acquire environ-
mental information [27]. This approach poses a maximum-like-

lihood estimation problem, where both the location of land-
marks and the robot’s position have to be estimated. Likelihood
is maximized under probabilistic constraints that arise from the
physics of robot motion and perception. Just like [27], they use
a Baum–Welch (or alpha–beta) algorithm. Unfortunately, this
approach requires a user to specify the landmarks, as opposed
to the robot self-selecting them. Also, their approach does not
include an exploration strategy. In other words, there is nothing
in their approach that directs the robot to explore new areas, or
that guides the robot to specific locations to reduce dead-reck-
oning error.

C. Localization with Topological Maps

The above localization techniques took the approach of con-
stantly trying to update the robot’s coordinates relative
to a global frame. In this paper, we localize the robot on a topo-
logical map without ever having to do so explicitly. Others such
as Dudek [11] and Kuipers [14] have reported localization re-
sults with the same philosophy. In [11], an agent locates itself
on a graph by matching nodes and the adjacency relationships
between them. This approach assumes that the agent can label
each node by depositing a marker at the nodes. The approach in
this paper and in [14] has the robot automatically identify nodes
in the topological graph from geometric environmental infor-
mation.

The basic thrust of this paper’s work is quite similar to
Kuiper’s. In [14], the robot essentially traces points that are
equidistant from two portions of the environment until it
reaches a point that is three-way equidistant or until it reaches a
point where a distance threshold is met, at which point the robot
follows the obstacle boundaries. The nodes in this graph are
termeddistinct places, which are local maxima of the distance
to nearby obstacles. The robot can easily self-determine distinct
places from sensor data. Distinct places are a subset of the
nodes of the GVG, which are the set of points equidistant
to three obstacles (in other words, there exist examples of
triple equidistance that are not local maxima). Localization is
achieved again by matching distinct places of the graph.

D. Simultaneous Localization and Mapping (SLAM)

Leonard and Durrant-Whyte coined the term SLAM, which
as its name suggests, enables a robot to construct a map of an
unknown environment while using the same map to bound or
nullify positioning errors [16]. With SLAM, the robot must au-
tomatically determine landmarks while constructing the map.
Smith and Leonard [25] developed a feature-based approach to
address SLAM by generating multiple hypothesis and selecting
among them while mapping an unknown region. The work pre-
sented here builds upon Leonard and Durrant-Whyte’s work by
determining a rigorously well-posed method for identifying fea-
tures and the topological relations among them.

Schultzet al. [23] present a more conventional approach to
SLAM that uses certainty grids. This approach is more of an
outgrowth of the algorithms presented in Section II-B. Although
this work does not directly impact the SLAM algorithm pre-
sented in this paper, Schultz and our approaches share some
common ideas and problems.



128 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 2, APRIL 2001

Fig. 2. Distance betweenx andC is the distance to the closest point onC .
The gradient is a unit vector pointing away from the nearest point.

III. SENSOR-BASED NAVIGATION AND MAP BUILDING

In this section, we review the definition of the GVG graph
structure and prescribe the control laws that construct its edges
and nodes. In the next section (Section IV), we give an example
of GVG exploration that highlights the problem of localization
using dead reckoning, a problem that is independent of the GVG
representation itself. The next section (Section V) then presents
our contribution of topological localization.

A. A Topological Map: The GVG

The GVG is a one-dimensional set of curves that captures the
salient topology of the robot’s environment. Just as people use
roadway systems, the planner uses the GVG to plan a path from
a start to a goal by first planning a path from the start to the
GVG, then along the GVG to the vicinity of the goal, and then
from the GVG to the goal. Our approach to exploration involves
constructing the GVG.

The GVG lends itself nicely to sensor-based implementation
because it is defined in terms of a distance function, which
measures the distance to the closest point on object, i.e.,

(Fig. 2). Distance can be determined
from sonar sensors that are rigidly attached to the perimeter of
mobile robots, pointing radially outward from the robot. Sonar
is emitted from the sonar sensors, bounces off an obstacle, and
returns to the robot. The time of flight is proportional to the
distance between the object and the sensor. The object can lie
anywhere along an arc (Fig. 3). In our implementation, for sim-
plicity, we assume the echo originates from the center of the
arc. Distance to an obstacle is then approximated by looking for
local minima in the circular sonar array (Fig. 4). A laser range
finder can be used to determine distance to the nearest obstacles
in a similar fashion.

In the planar case, GVG edges are simply the set of points
equidistant to two obstacles. More specifically, the planar GVG
edge defined by obstacles and is the set

such that

By definition, the end points or “nodes” of the GVG edges are
boundary points andmeet points[

for at least one ] [7]. In the Voronoi diagram

Fig. 3. Centerline model.

Fig. 4. A robot with eight sensors and their measurements is drawn. Sensor H
has the smallest value, 10, and is thus pointing at the nearest obstacle. Sensor
A has the second smallest value, but is not associated with the second closest
obstacle because Sensor A is not a local minimum. Sensor C is associated
with the second closest obstacle because its value is the second smallest local
minimum in the sensor array. When two adjacent sensors have the same value
and together form a local minimum, then assume the closest obstacle lies
between the two sensors.

literature [1], meet points are called Voronoi vertices, but we
use the term meet points because GVG edges terminate (and
meet) at them. The planar GVG is . Fig. 5 has
examples of planar GVGs.

Prior work [21], [7] has proven that the GVG can be used
for path planning because the GVG is aroadmapof the robot’s
free space. A roadmap is a geometric structure that possesses
the properties of accessibility, connectivity, and departability.
In other words, there exists a path between two pointsand

in the free space if and only if there exists a path fromto
a point in the GVG (accessibility), a path from a point in
the GVG to (departability), and a path solely contained in the
GVG between and (connectivity).

First, lets assume the GVG exists. Accessibility for an already
constructed GVG is achieved by moving away from the closest
object until a point on the GVG is reached. In other words, the
planner uses gradient ascent to determine the accessibility path
. Assuming that is the closest obstacle, the robot accesses

the GVG following

until it reaches .
The planner then uses a standard graph search algorithm to

find a point in the GVG such that for all ,
which is a point in the GVG that is closer to the goal than nearby
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Fig. 5. The solid curve segments are the edges of GVG, the set of points equidistant to two obstacles.

obstacles. Connectivity of the GVG ensures thatexists. Since
is closer to the goal than all other objects, departability is

achieved by following a straight line directly to the goal.
Effectively, if the robot knows the GVG, then it knows the

environment because the planner can use the GVG to determine
a path between any two points in a connected component of free
space. Likewise, if the robot can construct the GVG using sensor
data as it moves through the environment, then it has in essence
explored the space because it could use the GVG to plan paths
in the free space once exploration is complete.

B. Control Laws to Construct the GVG in an Unknown Space

One of the key features of the GVG is that a robot can incre-
mentally construct it using only line-of-sight information. Ex-
ploration of free space via incremental construction of the GVG
has the following five key components: 1) access the GVG; 2)
explicitly “trace” the GVG edges; 3) determine the location of
the meet points (GVG vertices); 4) explore the branches ema-
nating from the meet points; and 5) determine when to terminate
the tracing procedure.

The robot accesses the GVG in an unknown environment
using the same procedure as in a known environment: the robot
simply moves away from the nearest obstacle until it is equidis-
tant to two obstacles. The distances from and directions to the
closest obstacles can be computed using range sensors such as
lasers scanners and ultrasonic sensors. For the moment, imagine
rays emanating from the center of the robot and terminating
when they encounter an obstacle. The length of the shortest ray
corresponds to the distance to the closest obstacle and the direc-
tion of the ray is the direction to this obstacle. The robot simply
moves in a direction opposite to that of the shortest ray (see
Fig. 6).

Once the robot accesses the GVG, it must incrementally trace
GVG edges. We derive a control law that effectively traces the
roots of the expression

...

where is the distance to an object , and thus if
, the

Fig. 6. The circular disk represents a mobile robot with some of its sonar
sensor readings displayed as rays emanating from the mobile robot. The dark
ray corresponds to the smallest sensor reading, hence the robot will move in the
direction indicated by the dark arrow to access the GVG. The GVG is denoted
by a dotted line between two nonparallel walls.

robot is equidistant to obstacles.1 In the planar case
, which is zero when the robot is equidistant to two

obstacles.
At a point in the neighborhood of the interior of a GVG

edge, the robot steps in the direction

Null (1)

where

• and are scalar gains;
• Null is the null space of ;
• is the Penrose pseudo inverse of , i.e.,

Note that when is on the GVG, and thus
Null , which is simply the tangent direction of the

GVG. The stability of this control law has been derived [9]. Sta-
bility requires that ; the determines how quickly the
robot moves along the GVG and therepresents how aggres-
sively the robot moves back to the GVG.

Since and are functions of distance and distance gra-
dient, respectively, they can be easily computed from sensors,
i.e., a mobile robot can poll its sonar array for local minima to
determine and (and hence and ). Therefore, using
minimally processed raw sensor data, the robot can generate
and traverse an edge from node to node of the GVG. Hence,

1Note that there are many equivalent choices ofG, such asG(x) = [d (x)�
d (x); d (x)�d (x); . . . ; d (x)�d (x)] , all of which trace the same
GVG edge.



130 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 2, APRIL 2001

we have established a method by which a mobile robot using
low level sensory information can determine the connections be-
tween topological symbols, which are the GVG meet points.

C. Control Laws to Determine GVG Meet Point Homing

The robot traces an edge until it detects a meet point or a
boundary point. A meet point is, as its name suggests, a point
where GVG edges meet. Meet points are one example of a topo-
logical symbol. At a meet point, the robot must determine the
directions of the other GVG edges that emanate from it. In the
planar case, the (at least) three nearest obstacles are equidistant
to a meet point.

While generating the GVG, it is significant that the robot
precisely locates itself on the meet points. Thus a meet point
homing algorithm was introduced to trace a path that stably con-
verges onto the meet point location [10]. The control law for
homing onto a meet point is similar to the one for generating
GVG edges, except and its Jacobian are2

and

Therefore, at a meet point, i.e.,
, and the robot makes the following correction step to

home in on the meet point according to:

which can be shown to be stable using the previous analysis [9].
(Note that Null .)

Geometrically, what is going on is that when the robot is in
the vicinity of the meet point, it draws a circle through the three
closest points on the three closest obstacles. It then determines
the center of that circle and move a differential step toward the
center. After taking this small step, the robot repeats this proce-
dure. The stability of the resulting system allows us to conclude
that the robot will converge to the location of the actual meet
point.

D. Exploration

As mentioned above, the robot terminates edge tracing at a
meet point or a boundary point. When the robot encounters a
newmeet point, it marks off the direction from where it came as
explored, and then identifies all new GVG edges that emanate
from it. From the meet point, the robot explores a new GVG
edge until it detects either another meet point or a boundary
point. In the case that it detects anothernew meet point, the
above branching process is recursively repeated.

When there is a cycle in the environment, the robot will en-
counter a meet point that it already has discovered. It will have
found anold meet point. In this case, the robot will search for
the nearest meet point with unexplored emanating edges, from

2Note thatG could have many forms, including[d (x) � d (x); d (x) �
d (x)] .

Fig. 7. The sensor data collected from a mobile robot after running through the
environment depicted in Fig. 1. The walls of this environment have seemingly
rotated as a result of dead-reckoning error. The robot starts at meet point 1, and
then traces a path to meet point 6, at which point is backtracks to 1. When the
robot returns to meet point 1, it thinks it is located at the light gray square, when
it is actually located at the black square.

which it will continue the edge tracing process. Making this dis-
tinction between old and new meet points in large environments
(in the presence of odometry error) is the ultimate challenge that
we address in this paper.

Finally, when a robot reaches a boundary, it simply turns
around and returns to a meet point with unexplored GVG edges.
When all meet points have no unexplored edges associated with
them, then exploration is complete. Exploring with the GVG is
akin to simultaneously generating and exploring a graph that is
embedded in the free space.

IV. DEAD-RECKONING ERRORPROBLEM

Critical to the above stated exploration procedure is the
robot’s ability to determine if it has encountered a new meet
point or revisited an old one. When the robot reaches a meet
point, anaiveapproach would compare the coordinates of the
current meet point with the coordinates of all discovered meet
points. If there is a match, then the robot can locate itself on the
partially explored GVG. Otherwise, the robot can conclude it
has reached a new meet point.

Unfortunately, dead reckoning error interferes with this deci-
sion, as depicted in Fig. 7, which contains data collected from
running a Nomad 200 Mobile Robot in the environment de-
picted in Fig. 1. This experiment occurred in 7 14 square
meter floor space covered with linoleum tiles. The Nomad 200
can translate and rotate in the plane. The robot also has 16 ra-
dially pointing outward sonar sensors to measure distance to
nearby obstacles.
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In this experiment, the robot starts near the square which de-
notes meet point 1. The robot heads toward meet point 2 tracing
a GVG edge, which is denoted as a thick solid curve. The thick
solid curves are the coordinates of the GVG edge, based
on encoder readings. The gray squares represent the sensor read-
ings used to generate the GVG edge (Fig. 7). Note how they
cluster together to form two parallel walls and the thick solid
curve lies in the middle of them. These sensor readings are not
stored by the robot, but are displayed here for visualization pur-
poses.

The robot then continues from meet point 2, to 3, and then
all the way to meet point 6. Now, the robot must back-track
to a meet point with unexplored directions. The back-tracked
(retraced) GVG is represented by a thin gray line and the plus
marks denote the sensor returns from the back-tracking proce-
dure. Again, the thin gray line represents the coordinates of the
GVG, based on encoder readings.

Note that the thick solid and the thin gray curves do not
line up. This is a result of dead-reckoning error. So, from the
robot’s view of the world, through its encoders, the environment
is starting to rotate clockwise. When the robot returns to meet
point 1, the robot cannot conclude from its encoder readings that
it is truly at meet point 1.

V. TOPOLOGICAL LOCALIZATION

With the control laws to generate edges and nodes of a topo-
logical graph in hand, we can now present a three-tiered system
to topological localization: zero dimensional, one dimensional,
and two dimensional. The zero-dimensional method assumes
that all meet points have a unique signature. Simply returning to
a meet point immediately localizes the robot. Unfortunately, this
method is naive because many meet points may look the same
to the robot, especially in man-made environments like office
buildings. Therefore, we can use the “history” of the robot, i.e.,
we recall the (one-dimensional) sequence of edges and nodes
that the robot traversed in order to determine the robot’s posi-
tion. This method works quite well when the robot intentionally
visits an already explored meet point. When the robot uninten-
tionally encounters an already visited meet point, it must then
rely on the topology (two dimensions) of the graph structure to
determine that the robot is visiting old territory.

In this section, we introduce some methods by which a robot
may detect a meet point and then show why we do not want to
rely upon these methods. In other words, we show why we prefer
not to use a purely zero-dimensional approach. Next, we show
how a robot can use its knowledge of a partially explored map
to follow a sequence of edges to return to an already encoun-
tered meet point. Finally, we describe the full two-dimensional
case which is invoked when the robot accidentally encounters
an already visited meeting.

A. Meet Point Identification

The meet points, or any other topological node, serve as land-
marks that the robot determines on-line. Here, we describe some
robust, albeit naive, methods for identifying meet points. If each

Fig. 8. The relative location of the three smallest local minima (vectors to the
closest points on the closest obstacles) are similar for strikingly disparate meet
points.

Fig. 9. Varying neighboring boundary nodes.

node in a topological graph “looked” different to the robot, then
we could stop here. Simply invoking the control law to return to
a meet point would be enough to determine the robot’s position.
However, this is not going to be the case, because many environ-
ments have meet points that look the same. Take, for example,
a long corridor with lots of T-intersections. All of the intersec-
tions look the same.

Initially, we tried to derive a “sensor signature” for each meet
point based on the robot’s 16 sonar sensor readings, but this
proved to be ineffective. Using all 16 sensors was not useful
because many of the readings were inaccurate due to specular-
ities and false echoes. Then, we considered the three smallest
local minima of the circular sonar array. This was not useful
because local minima with “similar” signatures correspond to
meet points of significantly different geometry (Fig. 8).

Instead of using a complicated sensor signature to identify
a meet point, we look for astable feature, one which will not
change in the presence of sensor noise and slight changes in
robot location. A stable feature can be viewed as a landmark that
the robot determines reliably on-the-fly. The first distinguishing
and stable feature is the distance to the closest obstacle(s) at the
meet point; distance is a stable feature because the homing al-
gorithm described in the previous section has been proven to
be stable. Obviously, this distance measurement will not dis-
tinguish different meet points very well, but it can be used to
quickly eliminate any candidate meet points.

We can also exploit the topology of the GVG to reliably
disambiguate meet points by looking at the neighboring nodes
of a particular meet point. For example, a meet point with one
neighboring boundary node is significantly different from a
meet point that has no boundary nodes. This criterion readily
distinguishes between the two meet points in Fig. 8, where the
sensor signature was virtually useless. For a triply equidistant
meet point, the varying combinations of meet points with
neighboring boundary points is depicted in Fig. 9.
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Fig. 10. Three edges is different from four edges.

Fig. 11. Departure angle criterion does not distinguish between (A) and (B),
but does discriminate between (A) and (C).

Another stable criterion looks at the number of edges ema-
nating from a meet point. Again, while using the homing algo-
rithm, sensor noise and position uncertainty will not affect the
number of edges emanating from a meet point (Fig. 10).

The final criterion matches the relative departure angles of
GVG edges emanating from the meet points. Meet point (A) in
Fig. 11 has the same ordered set of departure angles as meet
point (B), whereas meet point (C) may have the same angles
as meet point (A), but the ordering is different. Encoder error
cannot affect the ordering of these angles, therefore meet point
(A) is definitelydifferent from meet point (C).

By combining the distance and neighboring nodes criteria,
the robot now has a significantly better chance for determining
at which meet point it is located, or for concluding that it is
at a new meet point. Unfortunately in real environments, these
criteria will produce a candidate set of meet points at which the
robot is located. The robot must further exploit the topology of
the constructed roadmap.

B. Intentionally Revisiting a Meet Point

Our goal is to minimally rely upon sensor signatures to deter-
mine the robots position. Instead, we can exploit the topology
(adjacency relationships) of the GVG to determine the robot’s
position and reliably direct it to a destination. The control laws
guarantee that the robot can follow an edge and home onto a
meet point. When the robot uses its partially explored map to
intentionally return to a meet point, all it needs to do is follow
a path, i.e., a sequence of edges and nodes, in the GVG by in-
voking a sequence of edge following and meet point homing
control laws. The planner uses a one-dimensional history.

This method is best explained by example. In Fig. 7, the robot
started at meet point 1 and worked its way to meet point 6. Now,
the robot must retraverse the GVG back to meet point 1 to ex-
plore the unvisited edge emanating from meet point 1. The robot
first intentionallyreturns to meet point 5. In order to return to
meet point 5, the robot simply invokes an edge tracing control

law until it detects a meet point and then it invokes the meet
point homing routine to converge onto a precise location of the
meet point. In Fig. 7, recall that the gray box is the robot’s per-
ceived location based on encoder coordinates, but in actuality
the robot was located at the solid box.

The robot repeated this procedure four more times until it
reached meet point 1. Even though the encoders indicated that
the robot was located at the gray square, in actuality, it was lo-
cated at the black square. The robot knew its accurate position
because it intentionally sought meet point 1 and its meet point
identifier confirmed that it had reached meet point 1. Therefore,
the robot knew exactly where it was in the GVG, without ever
relying on global encoder information.

This approach may not work well when meet points are
“close” to each other. Sensor error can cause the robot to
temporarily escape the current meet point’s basin of attraction
and fall into the “next” meet point’s basin of attraction. When
this happens, the robot homes onto the “next” meet point in
its sequence. To address this problem, when the robot homes
onto a meet point, it can use the sensor signature, described
above, to confirm that it has arrived at the correct meet point.
If the robot accidentally arrives at the wrong meet point, it can
then use its partially explored map to determine if there was
another a meet point “closer” to the desired meet point. If so,
the robot can then conclude where it is located on the graph
and then continue along in the sequence of edge following and
node homing procedures.

C. Accidentally Revisiting a Meet Point

In the previous section, the robot intentionally directed itself
to a meet point it expected to encounter by undergoing a se-
quence of edge following and meet point homing control laws.
In many situations, the robot can unexpectedly find an already
visited meet point. The challenge is to determine if the “next”
meet point that the robot encounters is a new point or an already
visited one. The robot must distinguish between new and old
meet points in order to successfully explore an unknown en-
vironment. The robot does this by combining the zero-dimen-
sional and the one-dimensional localization methods of the pre-
vious two subsections to form a truly two-dimensional localiza-
tion procedure.

In this procedure, we assume that effect of orientation errors
are more pronounced than translational errors, i.e., orientation
dead-reckoning error dominates translational error accumula-
tion. This is a reasonable assumption, at least with the Nomad
200 from Nomadic Technologies and can be readily seen in
Fig. 7 in Section IV. In Fig. 7, the environment has seemingly ro-
tated because of dead-reckoning error, but note how the lengths
between meet points remains fixed. With this assumption in
place, we can now determine the lengths of all GVG edges using
encoder data. Note that we are only using “recent” encoder data
when determining edge lengths.

When the robot encounters a meet point, it enumerates a set
of candidate meet points that it could have reached, based on
the criteria of the previous section. The robot then retraces an
already explored edge emanating from the current meet point
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Fig. 12. The robot has partially explored its free space. The GVG for this
environment has a cycle encircling the obstacle in the middle of the room. The
GVG has driven around this cycle twice noting that meet point 1 and 5, 2 and 6,
and 3 and 7, respectively, all look the same.

to an adjacent meet point. Again, a set of candidate meet points
corresponding to the second meet point is enumerated. If the dis-
tance between a meet point in the second set toanymeet point in
the first set is not the same as the distance the robot traveled from
the first meet point to the second, then the appropriate meet point
is eliminated from the second set. Therefore, the second set of
points only contains meet points whichcouldbe adjacent to at
least one meet point in the first set. That is, we have in essence
identified a set of candidate edges that the robot just has tra-
versed. This procedure is repeated until only one possible meet
point remains. Essentially, we have described a graph matching
procedure where the robot partially reconstructs a fragment of
the GVG and matches it with the already constructed GVG. This
is why we call this a full two-dimensional localization approach.

It is worth noting that the robot does not store the GVG edges
because it retraces them during the backtracking operation.
Therefore, the robot only stores the meet points, their adjacency
relationships (as edges), and the lengths of each edge. The
robot also stores the departure angle of the GVG edges, i.e.,
the angle the GVG edge makes with the other GVG edges
emanating from the meet point.

VI. EXPERIMENTAL RESULT

As can be seen in Fig. 7, the robot can intentionally return
to an already discovered meet point without much trouble by
following the already explored GVG. It is worth noting that the
robot does this bynotpassing through a sequence of way-points
specified by coordinates along the GVG. Instead, the
robot determines a path in the GVG (a path in the graph, not
a path in the robot’s free space), and then determines the appro-
priate sequence of edge following and node homing control laws
from this graph-path. Essentially, the control laws prescribe a set
of sensory experiences that the robot must undertake to arrive at

Fig. 13. Topological matching in a 750 ftenvironment. Dark lines correspond
to the first pass and shaded lines delineate retraces.

the meet point, or pass through a sequence of meet points to ar-
rive at the target meet point.

The challenge occurs when the robot unintentionally visits
an already discovered meet point. Figs. 12 and 13 demonstrate
an experiment in a real environment using a Nomad 200 mo-
bile base where localization was performed using criteria of the
previous sections. In Fig. 12, the robot starts at meet point 1,
then travels to 2, 3, and 4. From meet point 4, the robot heads
toward meet point 1, but when it encounters meet point 1 it tem-
porarily labels it meet point 5, but based on the sensor signature
described above, the robot notes that it could be meet point 1.
The robot then moves to meet point 2 and labels it meet point
6. Since meet point 6 “looks like” meet point 2, and the dis-
tance between meet points 5 and 6 is the same as meet points
1 and 2, meet point 2 is a candidate for meet point 6. Now, the
robot moves to meet point 3, temporarily labels it meet point 7
and makes the appropriate matches. At this point, the robot con-
cludes that 5 is 1, 6 is 2, and 7 is 3. See Fig. 13.

Now, the robot explores meet points 8 and 9 and then back-
tracks to meet points 3 and 2, in order (Fig. 13). When the robot
re-encounters meet point 2, it is fairly apparent that encoder
error has significantly accrued. Note the robot thinks it is located
on the light gray box, when in actuality, it is located on the dark
gray box labeled meet point 2. Although the encoders deceive
the robot into thinking it is a foot away from its actual location,
by matching GVG edges and nodes, the robot can conclude it
is at meet point 2. From there, the robot explores meet point
10. The final edge is drawn emanating from the shaded box to
emphasize that dead-reckoning error has accumulated, but the
robot knows meet point 2 anchors this edge. So, the robot has
computed the entire GVG without ever resorting to dead-reck-
oning, nor having to update its encoders.
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Fig. 14. Topological matching in a 1800 ftenvironment.

The environment in Fig. 14 is a superset of the one in Fig. 13.
In Fig. 13, meet points 9 and 10 are near closed doors of the
Sensor-Based Planning (SBP) Laboratory at Carnegie Mellon
University (CMU), Pittsburgh, PA. For the experiment depicted
in Fig. 14, we opened the doors and let the robot explore the
hall ways surround the SBP Lab at CMU. Note there is no cor-
respondence between the meet point labels in Figs. 13 and 14.

In the Fig. 14 experiment, the robot starts near meet point 1,
explores a boundary edge terminating at boundary point 2, and
then goes on to meet points 3, 4, 5, 6, 7, and 8. After meet point 8,
the robot leaves the lab, makes a left turn and explores corridor
until encountering meet point 10. The robot back tracks to meet
point 8 to continue exploring the other side of the corridor. Note
the light gray lines indicate the amount accrued dead-reckoning
error. The robot re-enters the lab at meet point 12, visits meet
point 14, and then finally returns to meet point 3. However, the
robot cannot conclude that it has returned to meet point 3, so it
temporarily labels it as meet point 15. The robot then travels to
meet point 2, labeling it 16 and then to meet point 4, labeling it
17. At this point, the robot has enough edges and nodes to match
2 to 16, 3 to 15, and 4 to 17, a which point the graph is matched.
Here, the robot has accrued over 10 ft in dead-reckoning error.

VII. D ISCUSSION ANDRELATION TO FUTURE WORK

A. Richness of Topological Information

The work presented in this paper is only the first step to-
ward the long-term goal of localization. Our immediate problem
deals with environments with repeated symmetries. One could

Fig. 15. A hypersymmetric environment in which all meet points look the
same, their neighbors look the same, their neighbors’ neighbors look the same,
etc.

increase the number of edges and nodes to be matched, but there
will always be an environment which will require one more
matching. Furthermore, there are environments that are sym-
metric and thus this procedure theoretically should not be able
determine the robot’s location in the GVG. Consider the free
space in Fig. 15. From the robot’s perspective, meet points 1,
2, 3, and 4 all look the same, using any sensor signature. Meet
point 1’s neighbors, meet points 2 and 4, look like meet point 2’s
neighbors, meet points 1 and 3, etc. Therefore, simply moving
to a neighboring meet point to determine at which meet point
the robot is currently located will not work. Likewise, moving
to a neighbor’s neighbor will not work either.

We believe that this problem is not a fault with the GVG
method, but rather, results from the lack of richness of informa-
tion that topology provides. Imagine being in a building whose
hallways all look the same, as they do in Fig. 15. It is very easy to
get lost because the hallways and their adjacency relationships
do not determine any specific location. To achieve localization, a
nontopological feature, such as the numbers on the office doors,
would have to be used. In mobile robotics, this means that the
robot would have to rely on a feature-based approach [16], [25]
to localize itself. If all of the features, themselves, also “look”
the same, then the robot would have to rely on a model of how
dead-reckoning error accrues and use a lower level representa-
tion [27]. Incorporating this hierarchical approach to SLAM is
a current topic of research.

Topological-based approaches do not work well when the
robot is in the middle of large open spaces with obstacles be-
yond the range of the robot’s sensors. Again, the GVG is not
a good choice for a map here, not because of a fault with the
GVG, but rather because of a lack of richness of topological in-
formation in large open spaces. It is hard to locate oneself in the
middle of the desert. Current work in robotic coverage [8] ad-
dresses this problem; here the robot must plan a path to pass the
sensor-range of the robot over all points of the free space.

B. Weak Meet Points

Another problem we have encountered is the emergence of
sporadic meet points from “weak” features in the environment.
Sometimes the robot “sees” a third obstacle and sometimes it
does not. For the GVG, the problematic landmarks are called
weak meet points. GVGs that have weak meet points lie on the
boundary of GVG equivalence classes: a set of GVGs that can be
continuously deformed into one another. GVGs in theinterior of
each class are stable because a small perturbation in the arrange-
ment of obstacles causes a small continuous change in the GVG
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Fig. 16. Weak meet point.

that preserves the neighboring relationships of all meet points
in the GVG. The GVGs on the boundary are unstable because
a small perturbation in the arrangement of objects can cause a
drastic change in the GVG.

Slight changes in sensor readings can have the same effect as
small changes in the arrangement of obstacles. In other words,
small changes in sensor readings can change GVG classes
which destroys the neighboring relationships of all meet points.
Consider a portion of the free space in Fig. 16. In one pass,
the robot starts from the top and drives down the corridor; the
range sensors on the robot give the robot the impression that
the indent on the right is not deep enough to warrant a meet
point. In a second pass, the robot moves from the top and
drives down the corridor; this time, a slight change in the range
sensors gives the robot the impression that the indent on the
right is deep enough to warrant a meet point. This meet point
is a weak meet point. Although the change in the GVG is not
topologically significant, performing topological matching on
a varying GVG becomes quite difficult because the meet points
are our landmarks.

This work addresses this problem by defining a new struc-
ture that has significantly fewer meet points called thereduced
GVG. Essentially, this new structure is the GVG with many of
the weak meet points removed from it. We observed that many
weak meet points, such as those in Fig. 16, have a boundary
node adjacent to it. So, we simply deleted all meet points that
have boundary nodes adjacent to them. This naturally deletes
additional nonweak meet points. With the problem meet points
removed, localization becomes more reliable. The drawback is
that we have fewer meet points to use for matching, as can be
seen in Fig. 17

Unfortunately, the reduced GVG does not entirely solve
the weak meet point problem. As mentioned before, another
problem lies in points that are close to each other. In one pass,
the robot may perceive them as separate meet points, but in
another, it may merge them into one meet point. Again, the
map will have to be updated to reflect the robot’s perception
of the world. Future work will incorporate the probabilistic
method of Thrunet al. [27] to allow for meet points that appear
and disappear. This will help us implement our approach in
dynamic environments.

C. Dynamic Environments

Future work will consider dynamic environments after the
GVG is constructed. In this scenario, the robot goes to a loca-
tion by invoking an interleaved sequence of edge tracing and
meet point homing control laws, identical to the ones used in
back-tracking to an already visited meet point. While tracing an
edge to an already visited orexpectedmeet point, if a transient

Fig. 17. Reduced GVG for similar environment as depicted in Fig. 13.

obstacle enters the robot’s environment, this will cause anun-
scheduled3 meet point to appear.

The challenge for the robot is to disambiguate between ex-
pected and unscheduled meet points. If this meet point “looks”
different from the expected meet point, then the robot can con-
clude the meet point was unscheduled. However, if the unsched-
uled and expected meet points look the same, the robot will have
a false understanding of its location. To handle this situation,
we will update the one-dimensional localization procedure of
intentionally revisiting meet points to use more geometric in-
formation as we did in Section V-C. We will use encoder data
to infer an approximate length of the GVG edges. Just as in
Section V-C, we will assume that linear dead-reckoning error
is negligible, so the robot can accurately, within an error box,
measure its distance along an edge. With this information, we
can, to within a tolerance, disambiguate between unscheduled
and expected meet points. When the robot does indeed find an
unscheduled meet point, it can find a new path using an optimal
graph strategy like [26] or it can generate temporary edges
until it re-accesses the original GVG.

VIII. C ONCLUSION

This paper formulates a new approach to SLAM of unknown
regions using a topological map annotated with some geometric
features. We term this procedure T-SLAM. The specific map
used in this work is the GVG, the locus of points equidistant to
two obstacles in the plane, but this work is general to other topo-
logical maps. Already, prior work has rigorously shown that the
GVG is sufficient for motion planning. Therefore, constructing
the GVG is akin to provably complete exploration because once
the robot knows the GVG it can plan a path between any two
locations.

The main contribution of this work is using topology to
localize a robot while mapping an unknown space. We use
the nodes of the GVG as “landmarks.” These landmarks are
topologically meaningful events that the robot can determine
on-line. Prior methods either use anad hocapproach or human
inputs to determine important features in the environment,

3We borrow this term from the land mine community that defines an unsched-
uled land mine to be one that was accidentally discovered in a region thought to
be free of land mines.
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whereas the GVG (or any geometrically annotated topological
map) already has the features, i.e., the meet points, that the
robot can use for localization.If each topological feature had
a unique sensor signature, then a simple zero-dimensional
approach of identifying the current meet point would be suffi-
cient for localization. Unfortunately, with any method, several
features may “look” the same, so this approach also considers
the topological relationship among features while performing
localization. In fact, our algorithm places more emphasis on
how features relate to one another than on the actual features
themselves, enabling us to store a concise data record of each
individual feature and bypass the need to make detailed data
comparisons among features.

The robot achieves SLAM by constructing a graph and
comparing the “recently” constructed graph to subgraphs of
the already constructed map. This map-and-compare method
will cause the robot to “re-explore” subregions of the target
environment. It is the conjecture of the authors that this
re-exploration step is unavoidable and a feature: if the robot
has multiple hypotheses of its true location, the algorithm can
specifically direct the robot where to go to disambiguate among
the possible locations of the robot in the partially constructed
graph. This is a true two-dimensional matching process.
The only assumption that we are making is that orientation
positioning error dominates the linear.

We initially implemented this approach on a mobile robot
with 16 sonar sensors and identified a problem with unstable
features found in some environments. The intrinsic benefit that
the algorithm uses the environment to define its landmarks has a
problem: for some environments, a slight change can result in a
different graph representation of the environment. This problem
manifests itself when errors in sonar sensors cause the robot to
oscillate between different environment representations.

Note that this method only works well when the robot’s free
space is rich with topological information, i.e., when there are
lots of obstacles. If the robot is in the middle of a large open
space where obstacles are beyond the sensor range of the robot,
there is no topological information available to the robot and
this procedure should not be invoked. Also, in hypersymmetric
environments where every meet point looks the same, all of the
meet points’ neighbors (and neighbors’ neighbors and so on)
look the same, topological information will not help. The au-
thors do not believe that method described here, by itself, is a
magic solution to SLAM, but a high level component of it that
rests on prior SLAM work.

Finally, the map used in this paper extends nicely into three
dimensions. Future work will apply the methods described in
this paper to three-dimensional localization. The target applica-
tion is Aercam, a free-flying robot that will be used to inspect
the future space station. Aercam will have an on-board GPS-like
system, but occasionally this system may lose track of Aercam
in which case the free-flyer must safely position itself.
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