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Abstract. Occupancy grids are a probabilistic method for fusing multiple sensor readings into surface maps of
the environment. Although the underlying theory has been understood for many years, the intricacies of applying
it to realtime sensor interpretation have been neglected. This paper analyzes how refined sensor models (including
specularity models) and assumptions about independence are crucial issues for occupancy grid interpretation.
Using this analysis, the MURIEL method for occupancy grid update is developed. Experiments show how it can
dramatically improve the fidelity of occupancy grid map-making in specular and realtime environments.
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1. Introduction

Working with mobile robots has forced AI researchers
to confront the problem of uncertainty in sensor mea-
surement, as they try to build environment maps using
unreliable sensor readings. One of the most popular
and successful methods of accounting for uncertainty
is the occupancy grid method (Elfes, 1990, 1992a;
Moravec and Blackwell, 1992; Moravec and Elfes,
1985). Occupancy grids divide space into a regular grid
of cells (either 2D or 3D), and estimate the probabil-
ity of any cell being “occupied” by a surface, based on
readings from a sensor. The mathematics of occupancy
grids are well-understood: in technical terms, they are
“recursive estimations of a tesselated spatial random
field” (Elfes, 1992a). Having said this, however, there
is still a lot of work to be done in making the method
work for particular applications. A fully general solu-
tion demands more information about sensor behavior
and environment than is readily available; and the sim-
pler approximations that have been suggested do not
adequately address the real environments in which they
are employed.

This paper examines two areas where naive assump-
tions of the theory are problematic: specular reflection
and redundant readings. Specular reflection is a prop-
erty of active time-of-flight sensors such as sonars and

radars, in which the energy from the device is reflected
at an angle by a surface, and reflects off multiple sur-
faces before returning to the device. Specular readings,
unlike readings in which the beam is reflected diffusely
back to the device, do not give direct information on
the distance to the nearest surface.

In typical indoor environments, the problems posed
by specular reflection from active time-of-flight devices
such as sonars are severe. Specular reflection can also
occur frequently with radar and sonar sensors in out-
door environments, especially in the presence of man-
made objects such as cars, poles, or anything with flat
surfaces that are not perpendicular to the sensor beam.

A second problem for realtime domains is the pres-
ence of redundant readings. The easiest assumption is
that all readings give independent information about a
particular cell in the occupancy grid. However, in the-
ory and practice this assumption is violated. A sensor
reading gives information about the combined proba-
bility of occupancy of a set of cells, not just a single
cell. Interpreting this combined probability as a sim-
ple, independent probability for a single cell can lead
to large errors in occupancy estimation.

To correct these problems of interpretation, the
MURIEL method (MUltiple Representation, Indepen-
dent Evidence Log) for updating occupancy grids is
developed. This method is a careful refinement of the
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occupancy grid mathematics along two lines. First, it
splits the sensor model into two parts, a diffuse and
specular model. By logging the sensor readings im-
pinging on a cell, the model mixture can be adjusted
dynamicallyfor each new reading, resulting in a bet-
ter estimation of occupancy. Second, to deal with the
problem of independent evidence, it keeps track of the
position and orientation (orpose) of all sensor read-
ings at a cell. Although sensor readings from the same
pose add very little independent information about oc-
cupancy at a single cell, readings from different poses
do. The evidence log at a cell can be used to filter out
readings that have redundant poses, thus eliminating
the problem of double-counting the evidence.

The paper is divided as follows. The next section dis-
cusses previous work in map-making, and shows how
the MURIEL algorithm extends occupancy grid meth-
ods. Then, we introduce the mathematics of occupancy
grids, and carefully develop the theory by looking at the
cases of single and multiple targets. The main contri-
bution of this section is a novel approach that captures
the main features of occupancy grid update in a sim-
ple way, and uses assumptions that are readily adapted
to typical sensing environments. In contrast, previous
methods either involved assumptions that were unjus-
tified in real environments, or needed complex infor-
mation about the prior distribution of objects in the
environment.

After this, a section on specular models shows how
to integrate gross errors in detection that accompany
certain kinds of sensor readings. Then, we discuss the
problem of independent evidence: how the recursive
nature of the occupancy grid update function arises
from the assumption of independent evidence, and
how that assumption is violated for sensors with static
poses. Finally, based on the analysis of these sections,
the MURIEL method is introduced, and results of in-
door environment experiments with sonar sensors are
presented.

2. Previous Work

Work in fusing multiple sensor readings for map-
making falls into two broad categories: target tracking
models and occupancy grid models. In target tracking,
one or more geometric features of the environment are
modeled and “tracked,” that is, their location is es-
timated at each new sensor reading. Target tracking
models have been used, with impressive results, since
the work of Crowley (1985, 1989) and Leonard and

Durrant-Whyte (1992). This work uses the techniques
of Kalman filtering, originally developed for satellite
tracking, to update uncertainty estimates for the robot
and targets as the robot moves and gathers information
with sonar sensors.

Target-tracking methods are appropriate when there
are a small number of targets, such as a few landmarks,
and their interaction with the sensor is well-known, i.e.,
their surface reflectance and geometry. For example,
Leonard and Durrant-Whyte use sonar corner reflectors
as their main target, and pick out a few strong targets as
landmarks for updating the robot position. The Kalman
filter gives the optimal update for the robot and target
positions, given noise in the sensor reading and robot
position.

A key issue in the target-tracking paradigm is the
data-association problem: how to identify the target
that a given sensor reading is associated with. Pick-
ing the wrong target is a gross error (in contrast to
noise-induced ranging and robot position errors) that
can lead to divergence of the Kalman filter, where the
robot is completely lost in the environment. Cox and
Leonard (1994) point out the importance of this prob-
lem, and suggest a Bayesian tree approach to formu-
lating and processing multiple hypotheses about data
associations.

While target-tracking is a good method for naviga-
tion using landmarks, in many map-making situations
it may be important to determine not just the position
of a few landmarks, but the complete surface geom-
etry of the environment. Obstacle-avoidance is one
application; place-recognition is another. For these
applications, target-tracking methods aren’t appropri-
ate, because they rely on a small set of landmarks
whose geometry is specified beforehand, and can’t fill
in the complex, unknown surface geometry. The occu-
pancy grid method originated by Moravec (1985) and
extended by Elfes (1990, 1992a) provides a probabilis-
tic framework fortarget detection, that is, determining
whether a region of space is occupied or not. Unlike
the case of target tracking, in occupancy grids the pri-
mary problem is one of data association: does a sensor
reading give information about surfaces in a particular
area? Although there is uncertainty in the exact range
of an echo, the geometric uncertainty of the beam width
(which part of the beam was reflected?) and multiple
reflections dominate the range error.

Initial experiments with the occupancy grid method
simply ignored geometric uncertainty, assuming that
all sensor returns were simple reflections (Moravec and
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Elfes, 1985), and ignoring the problem of beam width.
Later, Elfes (1990, 1992a) reformulated the method as
a probabilistic Bayesian updating problem using gaus-
sian noise with a very large variance to account for
the gross errors entailed by multiple reflections. He
also addressed the problem of geometric uncertainty
associated with sensor beam width by considering tar-
get detection under all possible configurations of the
environment.

While Elfes’ work represents the best current devel-
opment of the occupancy grid model, it has a number of
undesirable features. First, modeling multiple reflec-
tions as gaussian distributed is not realistic, since typi-
cally they give highly-correlated readings from nearby
positions. Further, the use of a gaussian distribution
implies anaveragingmodel, in which every sensor
reading is assumed to be corrupted by the same “gross
error” noise. Recent work by Moravec (1992) on tun-
ing the noise model for particular environments still
treats all sensor readings the same. In fact, there are
test such as Drumheller’ssonar penetration condition
(Drumheller, 1985) for estimating whether individual
sensor readings are the result of multiple reflections or
not.

A second problem with Elfes’ framework is the
practical matter of enumerating and updating prob-
abilities for all possible environmental situations of
target detection, since the number of such situations
grows exponentially with the spatial area covered. In
practice, given the overwhelming combinatorics of
keeping track of data associations for each reading,
simplyifying independence assumptions are made to
reduce the computational complexity of Bayesian up-
date (Borenstein and Koren, 1991; Matthies and Elfes,
1988). That is, each cell of space is treated as an in-
dependent target in the presence of the geometric un-
certainties induced by the beam width. This leads to
unrealistic estimates for target map updates, e.g., all
the cells at the leading edge of the beam have their
probabilities raised, when in fact usually only one cell
is responsible for the echo.

The MURIEL method is a result of addressing these
two problems of occupancy grid map-making. We
first introduce a multiple target detection model that
accounts for the typical features of occupancy grid
update, the surface and freespace hypotheses, with-
out complicated summation over all environments. The
model assumes a random (unbiased) distribution of sur-
faces in the environment. Using this model, we derive
a mixture formulation that can weight an individual

sensor reading based on an estimate of single or multi-
ple reflection. The weighting scheme makes it possible
to use information about individual sensor readings to
update the occupancy grid more accurately; all previ-
ous approaches used a fixed weighting for all readings.

We then focus on the problem of data association
generated by the large beam widths of typical sonar and
radar sensors. Instead of trying to keep track of cor-
relations produced by each sensor reading, we ask un-
der what conditions the multiple target detection model
gives the assumed random distribution of surfaces. One
answer is that sensor readings from differentposes(po-
sitions and orientations) of the sensor give the assumed
distribution. Based on this reasoning, we propose treat-
ing sensor readings as independent only if they come
from different poses. In this way, the combinatorics
of data association is eliminated, and the indepen-
dence assumptions are made to correspond to realistic
situations.

Finally, there have been some attempts to deal with
dynamic objects in the occupancy grid by using tempo-
ral information to filter older readings. Borenstein and
Koren (1991) introduce the Vector Field Histogramm
(VFH) method. They use a spatial histogram of sonar
“points,” along the axis of the sonar beam, to iden-
tify areas that are likely to contain obstacles. The his-
togram is updated rapidly as new returns come in, and
older ones are abandoned. The VFH method has the
advantage that it can deal with dynamic and noisy en-
vironments; but, because it is only loosely related to
probabilistic methods, it has not been used to build
stable maps of an area.

3. Probabilistic Sensor Models

Figure 1 shows an abstract sensor interpretation method
for gathering information about the environment. A
sensorS measures some condition by transforming

Figure 1. Sensor interpretation. A propertyA gives rise to mea-
surementB, which is interpreted by consideringP(A | B).
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energy (radiation, mechanical energy, etc.) into an
electrical signal whose characteristics are measured
(B) and interpreted to give information about some
property of interest (A). In the case of time-of-flight
sonars, which are the principal example in this paper, a
sonar transducer emits a short pulse of sound (“ping”)
and then listens for the echo. The measured quantity
is the time between the ping emission and echo recep-
tion, conveniently referred to as arange reading, that
is, one-half the distance the ping traverses in that time.
We write a range reading of distanceD asr = D. The
interpretation routines uses the range reading to esti-
mate the distance of the nearest surface within the cone
of the propagating ping.

A sensor modeldescribes how a sensor interacts with
the environment. An ideal sensor would give perfect
information about the properties it reports on, but in
practice there is always some uncertainty associated
either with the sensor reading, or how the sensor read-
ing relates to the quantity of interest. The uncertainty
can be expressed using probabilistic methods, specifi-
cally Bayes’ rule. We have:

P(A | B) = P(B | A)
P(A)

P(B)
, (1)

whereP(A) andP(B) are the prior probabilities ofA
andB.

Thesensor modelis the quantityP(B | A), the prob-
ability of getting the measurementB given that the en-
vironment has propertyA. Normally this is determined
by taking readings of the sensor in known environment
states. In the case whereB is a continuous quantity,
the result is a conditional probability density function.
The randomness introduced by the measurement pro-
cess is typically considered to be gaussian, that is, for a
fixed A the probability of getting a readingB will have
a gaussian distribution around a mean value.

It is often inconvenient to estimateP(B), and by
simple probability rules Eq. (1) can be rewritten as:

P(A | B) = P(B | A)P(A)

P(B, A) + P(B, Ā)
(2)

= P(B | A)P(A)

P(B | A)P(A) + P(B | Ā)P(Ā)
.

Here, we assume we are given the prior probabilities
P(A) and P(Ā) as initial information; the quantities
P(B | Ā) andP(B | A) are determined experimentally
or theoretically, based on the sensor characteristics.

This form of the sensor model brings out two inter-
esting aspects of the model. First, if the sensor reading
B is independent of the surfaceA, then the posterior
probability equals the prior probability. To see this,
just substituteP(B | Ā) = P(B | A) into the above
equation, and notice that the right-hand side simpli-
fies toP(A). Second, if the sensor does not give false
positives (P(B | Ā) = 0), then the posterior probabil-
ity will always be 1 when a reading is detected, since
the only source of such a signal must be the occupied
cell.

Change in odds is a often much more intuitive quan-
tity to deal with than the absolute probability, because
it factors out the priors in a nice way. To convert to an
odds formulation, we use the definition:

O(A)
.= P(A)

P(Ā)
(3)

O(A | B)
.= P(A | B)

P(Ā | B)
.

The odds of a proposition being true range from 0 (ab-
solutely impossible) to+∞ (absolutely true).

Theodds-likelihood posteriorcan be computed as:

O(A | B) = P(B | A)

P(B | Ā)
O(A)

.= λ(B | A)O(A). (4)

If the ratioλ(B | A) is 1, then there is no change to the
odds ofA being true.

λ(B | A) is called thelikelihood ratio of B given A,
and it has the same range as an odds, from 0 to+∞.
Using a logarithmic form gives a more natural additive
scale for representing odds:

log O(A | B) = logλ(B | A) + log O(A). (5)

Here the contribution of the prior is added to a contri-
bution from the observation.

3.1. Occupancy Grid: Single Target Model

For occupancy grids, space is divided into a regular
grid, and the propertyA that we are trying to determine,
for each cell, is whether there is a surface in the cell,
that is, whether the cell isoccupied. If i is the index of
a cell, we’ll write Ci to represent the proposition that
cell i is occupied, andCi that it is unoccupied.Ci is a
binary random variable. The quantity we are interested
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in is the probability ofCi , given a range readingr = D:

P(Ci | r = D). (6)

P(Ci | r = D) is a simple probability for any particular
valueD.

In this paper we’ll treatr as a continuous variable,
so that the quantitiesp(r = D | Ci ) andp(r = D | Ci )

are (conditional) probability density functions with the
continuous range variabler .1 Now, we can write Eq. (2)
as

P(Ci | r = D)

= p(r = D | Ci )P(Ci )

p(r = D | Ci )P(Ci ) + P(r = D | Ci )P(Ci )
. (7)

or, in terms of the likelihood ratio,

λ(r = D | Ci ) = P(r = D | Ci )

P(r = D | Ci )
. (8)

If the sensor interpretation problem is to detect a
single target, then the above probability formulation
can be applied fairly directly. We’ll work out the details
for the simple 1-D case first, where the occupancy grid
is a linear strip along the beam axis of the sensor.

The conditional probability densitiesp(r = D | Ci )

andp(r = D | Ci ) can be estimated theoretically. Let’s
look at a celli , whose distance from the sensor on beam
axis isri . What is the probability of a range reading
given that celli is occupied by the target? To a first
approximation, the signal detection probability density
for the target is a gaussian with a peak at the distance
ri . There are two other effects that modify this initial
proposal (Elfes, 1992a).

1. The range error becomes proportionally larger at
increasing range.

2. The probability of detection becomes smaller at
larger ranges.

Given these considerations, a mathematical model for
target reflection in the 1-D case is:

p1(r = D | Ci ) = α(ri )√
2πδ(ri )

e−(D−ri )
2/2δ(ri )

2
(9)

where the target is at distanceri from the transducer.
In this model,α(ri ) is the attenuation of detection with
distance,δ(ri ) is the range variance (increasing with
distance).

For typical sonar sensors, such as the electrostatic
Polaroid models (Polaroid Ultrasonics Group, 1992),
the range error is fairly small, on the order of 1%. We’ll
use the following conservative function:

δ(r ) = .01+ .015r, (10)

which is a fixed error of 1 centimeter plus 1.5% of the
range.

The detection attenuation depends in a complicated
way on the cross-section of the target; we’ll use a sim-
ple model that attenuates linearly with distance:

α(r ) = 0.6(1 − min(1, .25r )). (11)

From this equation, 4 meters is the limit of target detec-
tion, which is reasonable in typical office environments.
The factor 0.6 means that targets aren’t necessarily de-
tected even at close range.

What is the probability densityp1(r = D | Ci )? Un-
der the assumption that there is a single target, if the
target isn’t at celli it can be at any other cell. The sim-
plest assumption would be that the probability density
is constant, i.e., the target has an equal chance of being
detected anywhere along the beam.

p1(r = D | Ci ) = F. (12)

Putting all this together, Fig. 2 shows the log likeli-
hood ratio for a sensor reading of 2 meters (r = 2 m).

Figure 2. On-axis log likelihood ratio for a range reading of 2
meters.X axis is the distanceri of the cell,Y axis is the log likelihood
ratio used to update that cell. The range errorδ(r ) was made larger
by a factor of 10 for this and subsequent figures to show more detail.
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Cells that are in front of or behind the reading have sub-
stantially lower posterior odds (logλ < 0); these areas
are referred to asfreespace hypothesis areas. Cells at
the range reading have higher odds (logλ > 0), as is
expected; these are calledsurface hypothesis areas.

There are several interesting aspects of this figure.
First, because there is a single target, the likelihood
ratio falls off very quickly away from the range reading.
If any range reading is returned, the target must be near
that reading.

Also note the symmetry in the portions before and
after the range reading. Since we’re assuming there’s
a singletarget, a range reading at 2 m means that the
target is most likely around that distance; cells on either
side of it have their odds lowered. In fact, cellsbehind
the sensor, which were not even scanned by the sonar
beam, also have lowered odds, because the single target
isn’t there.

The whole point of using occupancy grids is to build
up a picture of the surfaces in an environment; obvi-
ously, the single target assumption is not a good one
to make in this case. The reason for presenting this
unrealistic case first is to tease out the basic develop-
ment of the probability model in the simplest possible
way, before moving to the more complicated multiple-
target case. As we show below, the biggest difference
in dealing with multiple targets will be manifested in
the freespace hypothesis. Cells not in the sonar beam
will be unaffected by updates; and an object will tend
to “shadow” other objects behind it.

3.2. Occupancy Grid: Multiple Target Model

In multiple target models, surfaces other than the tar-
get at celli can reflect the sonar beam. In the simplest
such model, assume that surfaces are distributed ran-
domly so that the probability density of reflection is a
small constantF . The only effect of the multiple target
assumption is to add the constantF to the probability
densityp(r = D | Ci ):

p1m(r = D | Ci ) = α(ri )e
−(D − ri )

2/2δ(ri )
2 + F. (13)

From this, the likelihood ratio must be:

λ1m(r = D | Ci ) = α(ri )e−(D − ri )
2/2δ(ri )

2 + F

F
. (14)

where the target is at distanceri from the trans-
ducer. Again,α(ri ) is the attenuation of detection with

distance,δ(ri ) is the range variance (increasing with
distance). Note that this is almost identical to the single
target model (Eqs. (9) and (12)), with the exception of
the extra termF in the numerator. The effect of the ex-
tra term is to make the likelihood ratio 1 (no change) for
cells everywhere but in the vicinity of the range read-
ing r = D. So the freespace hypothesis (logλ < 0) has
vanished in the multiple target model; why?

The answer is that, with multiple targets, detecting
one target at a distancer = D no longer means that
there won’t be other surfaces at different distances. We
need to make the further distinction that the detected
echo is thefirst one received2. To express the relevant
propositions, we’ll use the following notation.

r 6< D : No return less thanD
r @ D : r = D andr 6< D

The posterior odds of a cell being occupied, given
r @ D as thefirst range reading, is given by the likeli-
hood ratio

λ1m(r @ D | Ci ) = p1m(r @ D | Ci )

p1m(r @ D | Ci )
. (15)

The sensor probability densityp1m(r @ D | Ci ) is just
the probability densityp1m(r = D | Ci ) times the prob-
ability that no range reading was received at a distance
less thanD:

p1m(r @ D | Ci ) = p1m(r = D | Ci )P1m(r 6< D | Ci ).

(16)

The likelihood ratio can be rewritten as:

λ1m(r @ D | Ci ) = p1m(r = D | Ci )P1m(r 6< D | Ci )

p1m(r = D | Ci )P1m(r 6< D | Ci )
.

(17)

To calculate the last terms, we integrate the probabil-
ity density function up to the rangeD, and subtract it
from 1:

P1m(r 6< D | Q) = 1 −
∫ D

0
p1m(r = x | Q)dx,

with Q = Ci or Ci (18)

Let’s give some examples of what these equations look
like, to get some intuition about the probability value.
First, Fig. 3 shows a probability density function for
p1m(r @ D | Ci ), for targets at 1, 2, and 3 meters.
Note the primary characteristics: an initial period of
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Figure 3. On-axis probability densities for targets at 1, 2, and 3
meters.X axis is the range reading,Y axis the density function. The
background detection rate is similar for all three up to the target, and
then falls off to a lower value, based on the distance of the target.
The range varianceδ(r ) has been exaggerated for display.

low probability density produced by the random back-
ground targets, followed by the gaussian peak of the tar-
get atCi , followed by a lower post-target background
density. The post-target density is lower because of
the shadow effect of the target. Note the difference
in shadow effect between the three targets: the more
likely that the target is detected (closer to the sensor),
the lower the post-target detection rate.

Before giving an example likelihood function, let’s
see how it behaves in the extremes, whenri À D and
r i ¿ D.

1. ri À D. This is the case when updating a cell much
farther from the sensor than the first range read-
ing. The integral of Eq. (18) will be the same forCi

andCi , sincep1m(r = x | Ci ) is approximatelyF for
any valuex ≤ D. So, the likelihood ratio of Eq. (17)
will be very close to 1, i.e., cells farther away than
the range readingD won’t change their odds.

2. r i ¿ D. This is the case when updating a cell
much closer to the sensor than the first range read-
ing. The termP1m(r 6< D | Ci ) will be less than
P1m(r 6< D | Ci ), because it will include the gaus-
sian hill located atri . The closer the cell is to the sen-
sor, the greater the integrated value, and the lower
the likelihood ratio.

The combination of these effects can be seen in the
plot of Fig. 4, which shows the log likelihood ratio for
cell update, given a range reading of 2 meters. Note
that the surface hypothesis peak diminishes and widens
with distance from the sensor. The upward jog of the

Figure 4. On-axis log likelihood ratios for range readings of 1, 2,
and 3 meters.X axis is the cell distance,Y axis the log likelihood
ratio used to update the cell at that distance.

graph near the origin actually mimics a problem with
real sensors sonar and radar sensors: targets very close
to the sensor aren’t detected because they return an
echo before the sensor has finished transmitting.

We can briefly compare the multiple target approach
presented here with previous approaches. As we dis-
cussed earlier, these are of two forms.

1. Decomposition methods (Elfes, 1990, 1992b). This
is a theoretically-motivated method that relies on
a decomposition of the quantityp(r = D | Ci ) into
a summation over all possible configurationsC(i )
where cell i is occupied, using Kolmogorov’s
theorem:

P(r = D | Ci ) =
∑
C(i )

P(r = D | C(i ))P(C(i )).

(19)

In some simple cases, the quantitiesP(C(i )) and
P(r = D | C(i )) can be calculated theoretically.
Otherwise, they must be estimated by performing
experiments in the actual environment. Unlike the
multiple target model presented here, which has a
few parameters that can be adjust for different envi-
ronments, there is no simple way of estimating the
decomposition model given a new environment.

2. Simplifying assumptions. For example, (Matthies
and Elfes, 1988) makes the assumptionp(r =
D | Ci ) = 1 − p(r = D | Ci ), which is clearly not
the case for multiple targets, although it may be
reasonable under the single target assumption.

3.3. Cone Model

We close this section by giving the 2-dimensional
version of the multiple target model3 . To calculate
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Figure 5. On-axis beam pattern for the Polaroid instrument-grade
electrostatic transducer at 50 kHz. The curve represents equipoten-
tials of the sound energy level.

Figure 6. Sonar sensor interpretation.

the conditional probabilities, we’ll use a mathematical
model of the behavior of the sonar sensor, drawn from
the Polaroid specifications (Polaroid Ultrasonic Group,
1992) and other literature. Sonar transducers put out an
energy pattern that looks something like Fig. 5. There
is a main lobe whose width depends on a number of
factors, including the transducer element size and the
frequency of the ultrasonic pulse. For Polaroid elec-
trostatic transducers, the nominal width of the beam at
50 kHz is about 24 degrees. Although there are signif-
icant side lobes at up to 0.5 meters, we’ll approximate
the beam pattern by a cylindrical cone.

Figure 6 shows a typical 2-D cross-section of a
sonar sensor with a superimposed occupancy grid. The
sonar model is divided into two areas: a cone-like
freespace hypothesis, where the posterior probability

of occupancy will be lowered, and an arc-like surface
hypothesis, where it will be raised.

Given the geometry of the beam, a first approxima-
tion for the signal detection probability density would
be gaussian inθi (target cross section decreases), and
gaussian in the range deviation aroundri (range er-
ror), with the attenuation effects discussed previously.
Given these considerations, one mathematical model
for detection density in the multiple target case is:

p2m(r = D | Ci )

= α(ri )

2πδ(ri )σ
e−θ2

i /2σ 2
e−(D−ri )

2/2δ(ri )
2 + F (20)

where the target is at rangeri and angular deviationθi

from the transducer. In this model,σ is a measure of
the beam width; a typical value would be 12 degrees
(for a beam width of 24 degrees). As before,α(ri )

is the attenuation of detection with distance,δ(ri ) is
the range variance (increasing with distance), andF
is a measure of detecting random other targets. With
the exception of the angular term, this target density
function is the same as in the previous section. All
of the mathematics developed there carries over; for
example, the value ofP2m(r 6< D | Q) is:

P2m(r 6< D | Q) = 1 −
∫ D

0

∫ π

−π

p2m(r = x | Q) dθdx,

with Q = Ci or Ci (21)

We can plot the log likelihood function for a 3-meter
range reading (Fig. 7). The sensor reading is fixed at

Figure 7. Multiple target model lnλ2m(r = D | Ci ) for a 3 meter
range reading. The sensor is at 0, 0. X andY axes are the coordinates
of the cell to be updated; theZ axis shows the log likelihood value.
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a distanceD, and a value for lnλ at different cells
Ci is computed. Thus, this plot shows how each
cell in the grid will be updated given a diffuse sonar
reading of the indicated range. The same features
present in the 1-D plots of Fig. 4 are also present
here.

4. Specular Models

In both the single and multiple target models, we have
assumed that a range reading indicates the presence of
a target at that range, somewhere within the surface
hypothesis associated with the reading. This assump-
tion is based on adiffusereflection of energy from the
target: if the surface roughness of the target is larger
than the wavelength of the impinging beam, it will act
like a point reflector, scattering energy equally in all
directions.

When the surface of an object is smooth with respect
to the wavelength of the beam, it will producespecular
reflections, in which most of the energy is transmit-
ted coherently. If the surface is angled obliquely to the
beam axis, the energy will not be reflected directly back
to the transducer, but will undergo multiple reflections
before it is received (Leonard et al., 1990). In this case,
the measured time-of-flight does not represent reflec-
tion from the nearest surface, and the target detection
densityp2m(r = D | Ci ) given in Eq. (20) is incorrect
(see Fig. 8).

Although it may be possible to extract informa-
tion about the distance of surfaces, especially given
some knowledge of their geometry, in most applica-
tions specular reflections are considered to yield no

Figure 8. Specular (a) and diffuse (b) readings in a known local
environment.

information about surfaces. In terms of the multiple
target model, for specular reflections we would have:

p2s(r = D | Ci ) = p2s(r = D | Ci ) = F. (22)

Given there are two distinct types of beam reflections,
it makes sense to try to distinguish them. Unfortu-
nately this is not possible by direct examination of
the beam echo. Instead, we have to rely on indirect
evidence about surfaces in the beam cone to decide
whether a given reading is specular. Before examining
this idea in more detail, we first develop the mathemat-
ics of model mixtures so that the information can be
applied.

4.1. Model Classes and Mixtures

The natural division of range readings is between those
that are from specular reflection, and those from diffuse
reflection4 . We’ll call the class of specular reflections
S, and diffuse reflections̄S. Cases like Fig. 8(a) would
be classified as specular, because a diffuse reflection
from the surface would have generated a smaller range
reading. The respective target density functions are
given by Eqs. (22) and (20).

In general, we’ll have only uncertain knowledge of
whether a given reading is inS or not; so the diffuse
and specular models must be combined with different
weights, based on their probability. Since the diffuse
and specular classes are mutually exclusive and exhaus-
tive, we haveP(S̄) = 1 − P(S). We are interested in
calculating the quantitypc(r = D | Ci ) as a function
of the two model classes. By use of Bayes’ rule we
obtain:

pc(r = D | Ci ) = p(r = D | Ci , S̄)P(S̄)

+ p(r = D | Ci , S)P(S) (23)

= p2m(r = D | Ci )(1 − P(S))

+ p2s(r = D | Ci )P(S). (24)

Equation (23) is just a probabilistic mixture of the
two detection densitiesp2m(r = D | Ci ) and p2s(r =
D | Ci )

5.
Figures 9 and 10 shows the results of an equal mixing

and a 0.1 diffuse mixture. Since the target detection
function p2s adds no information, mixing it in quickly
attenuates the effect of the diffuse model.
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Figure 9. Model mixtures. This a log likelihood plot for an
equiprobable mixture of specular and diffuse readings, with a range
reading at 3 meters.

Figure 10. Model mixtures. This a log likelihood plot for a 10 per-
cent diffuse/90 percent specular mixture, with a range reading at
3 meters.

4.2. Dynamic Model Mixtures

In the first experiments done with the occupancy grid
model, it was assumed that the readings were all dif-
fuse, mostly because the office environment consisted
of many small and large articles that provided plenty
of diffuse or corner reflectors for the sonars (Moravec
and Elfes, 1985). Later, when the method was used
in more specular environments such as office corri-
dors, the value ofP(S) was determined theoretically
(Elfes, 1990), or experimentally (Moravec and Black-
well, 1992) by tuning the sensor model for the overall
environment. In the latter case, the diffuse and spec-
ular mix can vary for each value of the range reading,
e.g., specular readings are much more likely when the
range reading is high.

In all of these models, all readings are treated us-
ing the same target density function, with no attempt
to take into account the local environment of the par-
ticular reading; hence we’ll call themaveragingmod-
els. Often there is information that helps to determine
whether or not a particular sensor reading is specular.
The most important is whether a reading is specular
or not; Drumheller (1985) states asonar penetration
condition: the freespace hypothesis of a sonar read-
ing should not impinge on a high-confidence surface.
Knowledge of the environment, eithera priori or ac-
quired from previous sensor readings, can be used to
estimate the probability of a given reading being spec-
ular, and thus change the model mixturedynamically
to yield a more accurate interpretation of the measure-
ment.

Figure 8 illustrates the difference between static and
dynamic mixtures. There are two sonar readings of the
same rangeD; one is specular, intersecting a surface at
an oblique angle. The freespace and surface hypotheses
are obviously wrong for the specular reflection. Since
the mixture is fixed for a given valueD, the model does
not take into account the very different local environ-
ments of the two readings. Using the sonar penetration
rule, the specular reading should be recognized and the
mixture adjusted accordingly to weaken the hypothe-
ses. In the MURIEL method, discussed below, we use
local information to determine the probabilityP(S) of
specularity for each individual range reading, leading
to a more refined estimate of the likelihood function.

5. Independent Evidence

In typical realtime applications, sensor readings are
continuously acquired and processed to update the grid.
In general, the posterior odds for occupancy of a cell
are given by:

O(Ci | r1 = D1, r2 = D2, . . .)

= λ(r1 = D1, r2 = D2, . . . | Ci ) × O(Ci ). (25)

Estimating the joint sensor modelλ(r1 = D1, . . . | Ci )

is difficult, so the assumption is made that the sen-
sor readings areconditionally independent of the cell’s
state. Then the above equation has the form:

O(Ci | r1 = D1, r2 = D2, . . .)

= λ(r1 = D1 | Ci )λ(r2 = D2 | Ci ) · · · O(Ci ). (26)
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This is a recursive equation: the prior odds are multi-
plied by the likelihood ratios, and stored as the updated
prior. New readings just repeat the process.

Is conditional independence reasonable for the oc-
cupancy grid model? Let’s look first at the simplest
situation, the single target model. For conditional in-
dependence to hold, we have to have:

p1(r = D, r ′ = D′ | Ci )

= p1(r = D | Ci )p1(r
′ = D′ | Ci ) (27)

p1(r = D, r ′ = D′ | Ci )

= p1(r = D | Ci )p1(r
′ = D′ | Ci ). (28)

For the first term, the assumption of conditional in-
dependence is reasonable, because the gaussian range
error is generated by small fluctuations in the amount
of energy received or the receiver sensitivity, which
are randomly distributed from one measurement to the
next.

The second term, on the other hand, represents the
target detection distribution when the targetisn’t at cell
i . We’ve assumed that this is a uniformly random dis-
tribution. However, if the sensor and target are station-
ary, then two successive readings for the target will be
highly correlated around the distance of the target, that
is,

p1(r = D, r ′ = D′ | Ci ) ' p1(r = D | Ci ). (29)

So, taking two successive readings from the same po-
sition should give almost the same result as just one. If
you think about it a little, this makes sense. Suppose,
to the contrary, that every reading were conditionally
independent. Then, at the end of a series of readings,
the probability for a cluster of cells around the target
distanceri would be arbitrarily high. But we know
that the target can be at only one cell, so conditional
independence must be wrong.

There are several ways one might correct the con-
ditional independence assumption. In the single target
case, arenormalizationof the resultant cell probabili-
ties, so that they sum to one, would give a reasonable
answer. This would make use of the fact that there is
only a single target. In the multiple target case, this
solution wouldn’t work, because we know there can be
more than one occupied cell. Instead, we might try to
understand the correlation between occupancy of sets
of cells, by keeping a probability for each configura-
tion C(i ) of cells (see Eq. (19)). The target detection

density for cell configurations is conditionally inde-
pendent, so that the recursive updating formula would
work. And individual cell posterior probabilities could
be calculated by summing up the posterior probabili-
ties P(C(i ) | r1 = D1, r2 = D2, . . .). But except for
very small evidence grids, this method is impractical
because of the exponential number of cell configura-
tions we would have to update.

Let’s look at the problem from another angle, and
ask under what circumstances we can treatp2m(r =
D, r ′ = D′ | Ci ) as conditionally independent. The
assumption is that the multiple targets are distributed
to give a uniform set of readings, i.e., if we take enough
sensor readings, we approach a uniform distribution.
Since the environment is stationary, one way to try to
make this the case is to move the sensor randomly, i.e.,
to take successive reading from different sensorposes
(position and orientation). In fact, in most previous
papers on evidence grids, it is an implicit assumption
that each sensor reading is taken from a different pose.
The usual strategy for collecting readings is to move
a mobile robot to several different positions, and take
a circular scan from each position. This method, in
effect, is an approximation to random sampling based
on sensor poses.

In more realistic situations, the robot will be con-
tinuously moving from one place to another, perhaps
retracing its tracks. Even at a modest 20 readings/sec,
the robot will accumulate thousands of readings, many
of them redundant, over the period of a few minutes.
Some mechanism is needed to filter just the indepen-
dent readings. The simplest method is to keep a list of
the pose of the sonar when it is fired, and check any
new reading against the list. Although there do not ap-
pear to be any obstacles to implementing this scheme,
the MURIEL algorithm uses a dual representation, in
which each cell represents the pose of readings affect-
ing the cell. There are several reasons for this choice.

1. The representation is local to each cell, so decisions
about occupancy can be made on the basis of local
information.

2. Pose information at a cell is useful for determining
if a specular reading impinges on the cell.

3. In applications where readings can be coupled in
complex ways, pose information can be used to es-
timate the coupling.

In the next section we develop algorithms for integrat-
ing multiple sensor readings at each cell.
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6. The MURIEL Method

MURIEL stands for MUltiple Representation, Inde-
pendent Evidence Log. It is an algorithm for deter-
mining cell occupancy using diffuse/specular mixed
models and a log of all readings impinging on a cell.

The strategy of the algorithm is categorize the sonar
readings at a cell into a set of discrete classes, based
on (1) the distance of the sensor from the cell, (2) the
angle of the sensor to the cell, and (3) whether the cell
is in the freespace or surface hypothesis region of the
sensor. If a cell contains a number of surface read-
ings from different poses, it is likely that the freespace
readings are from specular reflections, and the model
mixture for these readings is adjusted accordingly. The
occupancy of the cell is then computed using Eq. (25)
for all readings on the cell.

There are some general assumptions used in the
derivation of the method. First, the sensor should return
information from a variety of poses, to get enough in-
formation for good reconstruction. Second, we assume
that the environment is static; we haven’t dealt with the
problem of dynamic environments (as is typical for oc-
cupancy grid methods). In the concluding section we’ll
point out some modifications to the method that might
deal with movement.

The rest of this section develops the algorithm in
some detail, starting with the derivation of specularity
probabilitiesP(S), then defining the basic algorithm,
and finally adding features to make the algorithm in-
cremental, so that it can be computed in realtime as the
robot moves.

6.1. Computing the Probability of Specularity

For any given sensor event, the probability that it will be
a specular reading (in the sense defined in Section 4.1)
is a function of the geometry of surfaces around the
sensor.A posteriori, we can conclude that a reading is
specular if we know that there are surfaces of a partic-
ular kind within the freespace hypothesis of the sensor
reading. These surfaces must be smooth and slanted
enough from perpendicular to the beam axis. Note that
small objects in the freespace of the beam don’t neces-
sarily mean a specular reading: they may just have too
small a cross-section to be detected.

In practice, we often start out with little information
about the environment in the occupancy grid, and build
up a picture of the surfaces as more sensor readings are
acquired. Ideally, once enough surface information is

accumulated, we should go back to earlier readings,
determine their specularity, and update the results. But
this would require a lot of recomputation, and keep-
ing track of what readings gave rise to cell occupancy
values would be a hard bookkeeping task. So, instead,
MURIEL uses a simplified method of computingP(S)

that is local to a given cell. The idea is the following: if
a cell is occupied, then from some poses a sensor will
give a surface hypothesis reading for the cell. If a cell
has enough such readings, we assume that it is (proba-
bly) occupied, and compute the specularity probability
P(S) for all freespacereadings at the cell, based on a
measure of how strong the surface hypotheses are. We
have found that the following estimation gives good
results.

First, sum up all of the logλ surface readings at the
cell; call this value logλS. Then, establish a cutoff
value CS for surface determination. If the value of
logλS is greater thanCS, then P(S) is 1, that is, any
freespace readings will be recognized as specular. If
logλS is 0, thenP(S) is 1. For values of logλS between
these endpoints,P(S) is computed by linear interpo-
lation. The cutoffCS is a parameter of the algorithm.
Higher values mean that the specular component is not
recognized as quickly; reasonable values are 2–3.

This method has the advantage of being quickly com-
putable, and yielding a reasonable value forP(S) in
many situations. But, it has the following drawbacks.
First, it treats all freespace readings as having the same
P(S) value, based on surface readings at one cell only.
Obviously, there may be some freespace readings that
are much more likely to be specular, because their
freespace readings impinge on other occupied cells.

Second, different cells may conclude that a single
reading is specular or diffuse. For example, if a cell
has no surface readings, any freespace readings are
assumed to be diffuse; where one of these readings
impinges on a cell with substantial surface hypotheses,
that cell will determine it to be specular. As a result,
some freespace areas may be given overly generous
updates.

6.2. Basic Algorithm

The MURIEL algorithm proceeds by updating cells af-
fected by each new reading. Given an occupancy grid
with pose buckets, and a new sensor reading divided
into freespace and surface hypotheses, MURIEL pro-
ceeds with the following five steps for each cell in the
active area of a new sensor reading.



             
P1: KCUP1: KCU

Autonomous Robots KL490-03-Konolige September 19, 1997 11:57

Improved Occupancy Grids for Map Building 363

1. Data collection. At each cell, the new reading is
checked to see if it duplicates any previous read-
ings. For this purpose, a set of discretepose buckets
are kept at each cell, one set for freespace readings,
one set for surface readings. Each pose bucket rep-
resents a range of angles and distances to the sensor.
If the reading is duplicated, it is discarded; else the
appropriate pose bucket is marked as filled. This
step eliminates non-independent sensor readings.

2. logλS calculation. The log likelihood ratio for
all surface hypothesisreadings is computed using
Eq. (20) for the multiple target model.

3. P(S) is computed for the cell, according to the pre-
scription given above.

4. Occupancy computation. Given the value forP(S),
the value of logλF , the freespace log likelihood ra-
tio, is computed by using Eq. (24) for each freespace
reading.

5. The final odds of cell occupancy is computed as
logλS + logλF + log O(Ci ).

The algorithm can be implemented using a data
structure at each cell representing the pose buckets as
bit vectors. The current implementation uses 64 angu-
lar divisions (5.625 degrees) and three displacements:
less than 1 m, 1 m to 2 m, and greater than 2 m. Thus
each cell needs a total of 48 bytes to represent pose
information. The update likelihoods for freespace and
surface hypotheses can be precomputed for each pose,
and saved in a table. From this information, the cell
log odds can be reconstructed using the MURIEL al-
gorithm, as described above.

6.3. Incremental Update

For each new reading impinging on a cell, the basic
algorithm recomputes the log likelihood ratio for each
pose, then sums them up. For greater efficiency, the al-
gorithm can be modified slightly so thatλS andλF are
computed incrementally. The values ofλS andλF are
stored at a cell; when a new surface reading comes in,
λS is updated by multiplying it with the likelihood ra-
tio for the new reading. When a new freespace reading
arrives,λF is updated in the same manner, by multi-
plying it with the likelihood ratio for the new reading,
as if it were non-specular. Finally, to compute the total
log likelihood, we use a linear interpolation:

logλT = logλS + log(λF (1 − P(S)) + P(S)). (30)

Figure 11. Approximation to the model mixture. The solid line
shows the true logλF value for various values ofx = P(S), while
the dashed line is the approximation of Eq. (30).

Figure 11 shows the difference between the true mix-
ture and the approximation of Eq. (30). Using the
approximation lets us avoid having to recalculateλF

using all freespace readings at a cell. The steps for a
new reading are now:

1. Check that it is not redundant (table lookup)
2. Update likelihood ratio (table lookup and multipli-

cation)
3. CalculateP(S) (linear interpolation)
4. Calculate log likelihood (Eq. (30))

The algorithm has been implemented in C using
a discrete-beam approach to approximate the cone-
shaped sonar reading: a small set of linear beams cov-
ering the cone are traversed from the origin of the sonar
outwards. The cell size is 10 cm on a side, which is a
reasonable tradeoff between resolution and algorithm
efficiency. A typical sonar reading will update some
tens of cells, and the algorithm takes less than a mil-
lisecond to do this on a Sparcstation 10–51. Given a
sensor rate of 20 Hz, MURIEL takes a small fraction
of realtime computational resources.

7. Results

The algorithm was tested on SRI’s small mobile robot,
Erratic (Konolige, 1995), in the corridors of SRI. Er-
ratic has 7 sonars distributed in a 180 degree arc along
its front. As the robot moves along the hallway, there
is significant specular reflection from the diagonal and
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Figure 12. Results of the MURIEL algorithm on a typical hall
scene. Grayscale indicates occupancy, with white (lnλ ≤ −2) being
unoccupied and black (lnλ ≥ 2) being occupied. For calibration, the
darker gray areas on the center far left and far right are at the unknown
point (posterior odds = 1). The open wall segments are doorways,
and there is an open junction in the upper right. Essentially all wall
segments are correctly identified.

Figure 13. Results of the standard algorithm on a typical hall scene.
Note how few wall segments are found, due to interference by specu-
lar reflection and the overwhelming influence of redundant readings.

side sonars. The results are shown in Figs. 12–16,
comparing MURIEL with the fixed-mixture (“stan-
dard”) model.

The robot was run at a slow speed (approximately
100 mm/sec) for 4 meters. The sonar rate was 20 Hz,

Figure 14. Results of the standard algorithm with pose buckets. All
redundant readings are discarded. There is some destructive interfer-
ence from specular reflections, leading to missed wall segments.
Also, some free areas are taken to be occupied, at the surface hy-
pothesis of specular readings.

Figure 15. Results of the standard algorithm using a .3 mixture of
specular reflections.

for a total of approximately 800 readings. Some attempt
was made to turn the robot so that the sonars would
impinge on the walls at a variety of angles. The path
the robot took is indicated by the dots, which are the
center of the robot at 1-second intervals.

No attempt was made to tune the diffuse model
(Eq. (14)) to the hallway; the parameter values were
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Figure 16. Results of the standard algorithm with pose buckets and
.3 specular mixture.

taken from an old set of experiments with sonar sen-
sors and a diffuse-reflecting object. The value of the
parameterCS was chosen to be 1.5, which means that
a cell whose surface readings sum to more than 1.5
will reject freespace readings. This setting is a strong
one, and biases the algorithm towards trusting sur-
face hypotheses that are confirmed from a small set of
poses.

As can be seen in Fig. 12, MURIEL extracts wall
segments that are somewhat thick, because of the range
uncertainty in the surface hypothesis, and because of
the discrete cell size. These wall segments match the
extents of the real hallway walls almost exactly, with
the open doors and a large junction in the upper right
indicated as freespace. The freespace model tends to
be conservative, requiring 3 or 4 different poses at short
distances before committing to full non-occupancy.
Note also that there is some “bleeding” of freespace
behind the walls, from specular reflections. This could
be attenuated a bit by using a more global specular
check, in which a reading was marked as specular for
all cells if it was specular for an individual cell.

For comparison, similar readings were used to re-
construct the hall scene using the “standard” algorithm,
with the diffuse reflection model (i.e., the specular con-
tribution was assumed to be zero), in Fig. 13. Here
the wall segments have been almost obliterated be-
cause of the overwhelming influence of multiple spec-
ular readings. You could say the robot is blinded by

redundant specular reflections; the occupancy grid has
the same saturation characteristics as a CCD sensor in
too-bright light. This hallway is particularly suscepti-
ble to specular readings, since the walls are smooth
wallboard.

The problem of specular reflections can be mitigated
somewhat by throwing away redundant readings, as in
Fig. 14. Here the standard model was used to compute
occupancy, but only independent readings, as deter-
mined from the pose information, were kept. There is
not nearly as much freespace saturation from specu-
lar reflections, and the hall boundaries are seen more
clearly. Still, since specular reflections are weighted
equally with diffuse reflections, the wall boundaries
still have washed out relative to the MURIEL results
in Fig. 12.

It might be remarked that because of the presence of
a large number of specular readings, the natural model
to use for the fixed-mixture algorithm would have a
strong specular component. Figures 15 and 16 show
the standard algorithm using a 30% specular mixture.
The first of these uses all redundant readings. As in the
diffuse case, there is a “washed-out” appearance to the
grid, although it is less severe because the freespace
hypothesis has been attenuated. Still, a lot of the wall
segments are missing, because the surface hypotheses
are also weaker.

One could argue that better results would be obtained
by increasing the surface hypothesis strength relative
to the freespace hypothesis. This strategy produces a
different problem: the surface hypotheses of specular
reflections start to become apparent, in arcs behind the
walls. The point is, there isno model mixture that
will do well in the presence of specular reflections,
since these are counted the same as diffuse reflections,
but their hypotheses are not correct. The most that
can be done is to try to minimize their effect by dis-
counting long-range readings, which tend to be more
specular. This is apparent in the hallway scene re-
produced in Fig. 2 of (Moravec and Blackwell, 1992),
where the best possible fixed sonar model produces
both freespace bleeding and false surface patches be-
yond the walls.

For completeness, Fig. 16 shows the 30% mixture
with redundant readings removed. A lot of the wall
area is weakly indicated, similar to Fig. 14. But the
weakness of the model mixture is apparent, with very
few clear freespace or surface patches.

Readers who wish to see the results of the algo-
rithm running in a simulation system can download
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the SAPHIRA software from the linkhttp ://www.
ai .sri .com/~konolige /saphira . Follow the in-
structions for installing the SAPHIRA system, then
start the simulator and the sample saphira client.
The occupancy grid routines are invoked using the
Display/Occ Grid menu item.

8. Conclusion

This paper presents a method, called MURIEL, for
dealing with the problem of specular reflection and re-
dundant readings in sensor fusion. The main insight is
that it is possible to discount redundant and specular
readings in a local fashion by keeping track of the read-
ings that impinge on a given cell. Although the results
presented here are qualitative, they provide anecdotal
evidence that MURIEL can significantly improve the
fidelity of the occupancy grid computation.

Although the examples in this paper are based on
sonar sensors, the MURIEL method can improve the
performance of occupancy grids with any sensor that
has a specular component, such as radar. It can
also help in multimodal fusion, in which informa-
tion from different types of sensors is integrated. The
sensors complement each others’ strengths, giving re-
sults not possible with a single sensor (Matthies and
Elfes, 1988). In multimodal fusion, MURIEL could
eliminate double-counting from single-sensor readings
taken from the same pose. It could also help filter specu-
lar reflections where appropriate, by using information
from all sensors to recognize cells with strong occu-
pancy odds, and then applying the local specular crite-
rion.

Some modifications of the MURIEL method, which
we have not investigated, might prove useful. One
is a global assessment of specularity, based on the
sonar penetration condition. Any new reading could
be checked in this way; but it would be hard to keep
track of older readings and re-evaluate them whenever
a relevant cell is modified.

By using just one reading per pose bucket, a lot of
readings are discarded. Although much of this infor-
mation is redundant, in some cases it may help to cat-
egorize a cell state. For example, given very small ob-
jects, or ones that are far away, the frequency of the
sensor response at a given pose is a measure of confi-
dence in the presence of the object from that pose. It
would be relatively easy to incorporate such refine-
ments into the MURIEL algorithm, although given
the overwhelming contribution of geometric error, this

refinement will probably not contribute a great deal to
the final result. One exception, however, would be to
use multiple readings and temporal information to “de-
cay” information in the grid, similar to ideas proposed
for the VFH method (see Section 2).
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Notes

1. Probability densities are written with lowercasep, and probabil-
ities with uppercaseP.

2. Many sonar and radar sensors can detect more than one echo
from a single output pulse. More complicated processing schemes
can make use of these multiple echoes, but typical mobile robot
applications will look at just the first one.

3. The generalization to three dimensions is straightforward, but
would complicate this exposition. Also, indoor mobile robots are
generally happy with two-dimensional representations, since they
typically operate on a fixed, level ground plane. At most they
might need several such plane representations for obstacles or
depressions at different heights.

4. Leonard and Durrant-Whyte (1992) point out that most strong
readings from sonars are actually specular, e.g., from corner re-
flectors or from surfaces normal to the sonar beam. These returns
aren’t “specular” in the sense used here: rather, we are using
“specular” to refer to any sensor reading that has reflected off
multiple nonlocal surfaces before returning to the sensor.

5. The specular/diffuse distinction makes little difference to
p(r = D | Ci ). Specular reflections might have reduced proba-
bilities for detecting random targets at short ranges, but we won’t
deal with this complication.
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