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Abstract

In this paper we present a technique for mapping partially observable
features from multiple uncertain vantage points. The problem of con-
current mapping and localization (CML) is stated as follows. Start-
ing from an initial known position, a mobile robot travels through a
sequence of positions, obtaining a set of sensor measurements at each
position. The goal is to process the sensor data to produce an estimate
of the trajectory of the robot while concurrently building a map of
the environment. In this paper, we describe a generalized framework
for CML that incorporates temporal as well as spatial correlations.
The representation is expanded to incorporate past vehicle positions
in the state vector. Estimates of the correlations between current
and previous vehicle states are explicitly maintained. This enables
the consistent initialization of map features using data from multiple
time steps. Updates to the map and the vehicle trajectory can also be
performed in batches of data acquired from multiple vantage points.
The method is illustrated with sonar data from a testing tank and via
experiments with a B21 land mobile robot, demonstrating the ability
to perform CML with sparse and ambiguous data.

KEY WORDS—mapping, navigation, mobile robots

1. Introduction

In this paper we present a generalized framework for feature-
based concurrent mapping and localization (CML) that en-
ables mapping of partially observable features from multiple
uncertain vantage points. This enables CML to be performed
in situations where individual measurements provide weak
geometric constraints, such as with wide-beam sonar sensors.
The problem of CML, also referred to as simultaneous local-
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ization and mapping (SLAM), is stated as follows. Starting
from an initial known position, a mobile robot travels through
a sequence of positions, obtaining a set of sensor measure-
ments at each position. The goal is to process the sensor data
to produce an estimate of the trajectory of the robot while
concurrently building a map of the environment.

The key technical difficulty in performing CML is coping
with uncertainty (Brooks 1984). For example, Figure 2 shows
a SICK laser scanner data and Polaroid sonar data collected
by a B21 mobile robot during several back-and-forth traverses
of a short corridor (about 60 m total travel length). We can see
that the dead-reckoning error of the vehicle becomes intermin-
gled with uncertainty in the values of measurements (noise)
and uncertainty in the origins of measurements (spurious re-
flections, ambiguous associations). These three distinct forms
of uncertainty—navigation error, sensor noise, and data as-
sociation ambiguity—combine to present a challenging data
interpretation problem.

The CML problem can be addressed using a variety of
different representations, such as evidence grids (Schultz and
Adam 1998) and topological models (Kuipers 2000). We ad-
vocate the use of a feature-based, probabilistic representation.
Smith, Self, and Cheeseman 1987) were the first researchers
to cast the problem of feature-based CML using a variable-
dimension state estimation formulation. In their approach, the
locations of both the robot and a number of objects (geomet-
ric features) in the environment are combined into a single
state vector in an appropriate parameter space. The locations
of the robot and the features are concurrently estimated using
recursive state estimation. From the titles of these two papers,
we use the term “stochastic mapping” to refer to this type of
algorithm.1 Examples of recent work on CML in robotics that

1. Note that this use of the term stochastic should not be confused with
randomized algorithms that themselves are stochastic, such as probabilistic
algorithms for motion planning (Kavraki, Svestka, Latombe, and Overmars
1996).
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Fig. 1. Hand-measured model of a corridor (total length approximately 25 m).

Fig. 2. Laser (left) and sonar (right) data taken with a B21 mobile robot in the corridor shown in Figure 1, referenced to the
dead-reckoning position estimate. The vehicle traveled back-and-forth three times following roughly the same path. Each
sonar and laser return is shown referenced to odometry. The laser data are slightly smeared during turning due to a latency
between the odometry and the laser data.

follow this formulation include Davison using vision (1998),
Guivant and Nebot (2001), Castellanos et al. (2000), Dis-
sanayake et al. (1999), and Jensfelt (2001) using laser sens-
ing, and Leonard and Feder (2001), Tardós et al. (2001), and
Williams (2001) using sonar. Gibbens et al. have analyzed the
closed-form solution of the linear, single-degree-of-freedom
CML problem, yielding some insights into convergence. This
body of work can be contrasted with other approaches to CML
that do not rely on feature-based models, such as Gutmann
and Konolige (1999), Thrun (2001) and Choset and Nagatani
(2001).

The general problem of CML incorporating data asso-
ciation ambiguity can be cast as a hybrid (mixed continu-
ous/discrete) estimation problem in which tracking and data
association are intertwined (Bar-Shalom and Fortmann 1988).
General theoretical models for hybrid state estimation, such
as multiple hypothesis tracking (Reid 1979; Mori, Chong,
Tse, and Wishner 1986), present a staggeringly large compu-
tational burden when applied to CML. The navigation error of

the platform prevents one from splitting the solution into sep-
arate subgroups (known as “clusters” in the tracking literature
(Kurien 1990)) corresponding to different parts of the envi-
ronment (Cox and Leonard 1994). Most implementations of
stochastic mapping decouple the discrete (decision-making)
and continuous (filtering) parts of the problem. The extended
Kalman filter (EKF) is typically used for continuous state
estimation (Smith, Self, and Cheeseman 1987; Feder 1999;
Guivant and Nebot 2001; Castellanos and Tardós 2000). This
is the method used in this paper, but it is not the only state esti-
mation algorithm which could be used. For instance, sequen-
tial Monte Carlo algorithms (Doucet, de Freitas, and Gordan
2001; Thrun 2001) could be chosen instead.

Discrete state estimation—making decisions about the ori-
gins of measurements—is usually performed in CML with
maximum likelihood methods such as “nearest-neighbor gat-
ing” (Bar-Shalom and Fortmann 1988). Such methods en-
counter difficulties when the distance between features in
the environment is smaller than the uncertainty in the robot
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position. Unfortunately, this situation can arise frequently in
practice. For example, in the data for the corridor shown
in Figure 2, the doors are recessed about 10 cm from the
corridor wall. The odometric uncertainty is much larger. In
this situation, it is very difficult to associate measurements
with features when considered in isolation. A more powerful
technique that tests the joint compatibility of multiple sen-
sor measurements, using a branch and bound algorithm, has
been developed by Neira and Tardós (2001) and successfully
applied to CML using laser data (Newman, Leonard, Neira,
and Tardós 2002) and sonar data (Tardós, Neira, Newman,
and Leonard 2001). Data association is not the primary focus
of this paper, however the topic is intimately linked with the
problem of mapping partially observable features. It is de-
sirable to employ methods for perceptual grouping that can
reject outliers while finding sets of measurements that, when
interpreted together, yield a consistent explanation. In this pa-
per we focus on the state estimation aspects of this problem,
describing a representation that allows the output of percep-
tual grouping routines to be consistently applied for mapping
from multiple uncertain vantage points.

In the computer vision community, the analogous prob-
lem to CML is structure from motion (SFM) (Faugeras 1993;
Taylor and Kriegman 1995; Chiuso, Favaro, Jin, and Soatto
2000; Yagi, Shouya, and Yachida 2000; Hartley and Zisser-
man 2001). An early approach to SFM that used the EKF was
developed by Ayache and Faugeras (1989). This work was
one of the first to apply geometric constraints in the state esti-
mation process, such as the fusion of two features in the map
that are asserted to be the same. Recently, constraint applica-
tion has been incorporated in stochastic mapping algorithms
by Chong and Kleeman (1997a), Tardós et al. (2001) and
Williams et al. (2001). Of recent work in computer vision, the
work of Chiuso et al. (2000) and McLauchlan (2000) are the
most closely related to the method presented in this paper.

The algorithm of Smith, Self and Cheeseman (1987) for
CML uses three models: (1) a robot motion model, (2) a fea-
ture mapping model, and (3) a measurement model. We refer
to these as the functions f(·), g(·), and h(·), respectively. The
robot motion model uses knowledge of the robot’s dynamics
for state projection. The feature mapping model uses sensor
observations to estimate the location of a new geometric fea-
ture, so that it may be added to the map. The measurement
model predicts observations of mapped features. The basic
method assumes that features are stationary, and that there
is only one robot, but it can be extended to accommodate
dynamic features and/or multiple robots (Fenwick, Newman,
and Leonard 2002).

A significant limitation of Smith, Self and Cheeseman
(1987) relates to the initialization of new features. The method
assumes that the full state of an object can be completely ini-
tialized using the measurement data available from a single
vehicle position, obtained by a single robot. However, this
situation is not satisfied in many important cases of practical

interest. In this paper, we present a generalized framework for
CML that permits mapping of partially observable features.
This can be applied to situations when the measurement data
from a single location are insufficient to completely estimate
the feature location, such as with wide-beam sonar measure-
ments or angle-only measurements. It also enables composite
features, comprised of multiple simple features, to be mapped,
such as joining points and lines together to form polygons. The
method also has application to mapping by multiple robots.

The issue of estimating partially observable features with
measurements obtained from multiple uncertain vantage
points is clearly shared in both the CML and SFM prob-
lems. State-of-the-art vision algorithms for SFM use bundle
adjustment (non-linear least-squares optimization) to concur-
rently estimate scene structure and camera motion (Triggs,
McLauchlan, Hartley, and Fitzgibbon 2000). These tech-
niques typically solve the association problem by using ran-
dom sample consensus (RANSAC) (Fischler and Bolles 1981)
or least medians (Faugeras, Luong, and Papadopoulo 2001)
to find groups of measurements that originate from the same
point in the scene across multiple images.

While most work has considered the batch SFM problem,
there have been some approaches that adopt a recursive ap-
proach, which is highly important for navigation applications.
Chiuso et al. (2000) have developed a real-time SFM system
that can deal with occlusion. In their system, tracked features
are not included into the full SFM solution until there is a
high certainty that they provide good quality data. McLauch-
lan has developed the variable state dimension filter (VSDF),
which is a hybrid batch/recursive technique that combines the
characteristics of the EKF and bundle adjustment (McLauch-
lan 2000; McLauchlan and Murray 1996; McLauchlan and
Murray 1995). The VSDF maintains a dynamic time window
of observations and camera motion parameters. We employ
a similar idea in this paper. Deans and Hebert (2000) have
developed a related method for CML with bearing-only mea-
surements and have performed an experimental investigation
of its performance. More recently, Deans (2002) has provided
several improvements to the VSDF, including an interpolation
scheme that reduces the linearization error and a factorization
method that yields computational efficiency.

The structure of this paper is as follows. Section 2 formally
defines the problem under consideration. Previous work is re-
viewed and the problem of mapping with partial observabil-
ity is formulated. Section 3 describes our new approach to
this problem. The key idea is to add past vehicle positions
to the state vector and to maintain explicitly estimates of the
correlations between current and previous vehicle states. By
incorporating past vehicle locations in the state vector, it be-
comes possible to consistently initialize new map features by
combining data from multiple vantage points.

We present two different types of experimental results with
the method. In Section 4, we present a series of simplified ex-
amples that use manual data association to demonstrate the
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processes of multi-vantage point initialization and batch mea-
surement processing. The results also demonstrate mapping
of composite features and the initialization of a new robot po-
sition into a stochastic map. In Section 5, we describe the use
of the method within a complete, real-time implementation of
CML that uses the Hough transform (Tardós, Neira, Newman,
and Leonard 2001) for perceptual grouping. The implemen-
tation is being developed to enable autonomous underwater
vehicles (AUVs) to perform CML using synthetic aperture
sonar (Schmidt 1998). The results in this paper, however, are
for a B21 mobile robot navigating in typical indoor environ-
ments, such as a corridor, using odometry and Polaroid sonar
data. Finally, in Section 6 we provide a further discussion of
related research and describe a number of interesting topics
for future research.

2. Problem Statement

2.1. General Formulation of the Problem

CML is somewhat unconventional as a state estimation prob-
lem for two reasons: (1) data association uncertainty, and (2)
variable dimensionality. Initially, the number of features in
the environment is unknown and there are no initial location
estimates for any features. The initial state vector is restricted
to contain only the initial state of the robot. As the robot moves
through its environment, it uses new sensor measurements to
perform two basic operations: (1) adding new features to its
state vector, and (2) updating concurrently its estimate of its
own state and the locations of previously observed features
in the environment. The robot also has to maintain its map,
which can incorporate the fusing of two features that are hy-
pothesized to be the same object (Ayache and Faugeras 1989;
Chong and Kleeman 1997a) and the deletion of features that
are hypothesized to no longer be present (Leonard, Cox, and
Durrant-Whyte 1992). In this manner, the number of elements
in the stochastic map (and hence the size of the state space)
varies through time.

Let us assume that there are n features in the environment,
and that they are static. The true state at time k is designated by
x(k) = [xr (k)

T xf (k)
T]T, where xr (k) represents the location

of the robot, and xf (k)
T = [xf1(k)

T . . . xfn(k)
T]T represents

the locations of the environmental features. We assume that
the robot moves from time k to time k + 1 in response to a
known control input, u(k), that is corrupted by noise. Let Uk

designate the set of all control inputs from time 0 through
time k.

The sensors on the robot producemk measurements at each
step k of discrete time. The set of sensor measurements at time
k is designated by Z(k), which is the set {zj (k)|j = 1 . . . mk}.
Let Zk designate the set of all measurements obtained from
time 0 through time k. We assume that each measurement
originates from a single feature, or it is spurious. For each
measurement zj (k) ∈ Z(k), there is a corresponding assign-

ment index aj . The value of aj is i if measurement zj (k)

originates from feature i, and it is zero if zj (k) is a spurious
measurement. Let Ak designate the set of all assignment in-
dices from time 0 through time k. The cardinality of the sets
Zk and Ak are the same. Let nk designate the number of fea-
tures that have been measured up through time k (the number
of features that have at least one measurement in Ak).

The objective for CML is to compute recursively the proba-
bility distribution for the location of the robot and the features
and the assignments, given the measurements and the control
inputs:

p(x(k), Ak|Zk,Uk−1) = p(xr (k), xf1(k), . . . , xfnk
(k),

Ak|Zk,Uk−1).
(1)

Before considering strategies for computing eq. (1), con-
sider first the more restrictive problem of localization and
mapping with prior knowledge of all the features and with
no data association uncertainty. With perfect knowledge of
A(k), we could discard the outliers and combine the remain-
ing measurements ofZ(k) into a composite measurement vec-
tor z(k). With prior knowledge of the number of features,
and prior state estimates for all features, we are left with
a “conventional,” fixed-dimension state estimation problem.
The general recursive solution applicable for fully non-linear
and non-Gaussian systems is well known (Bucy and Senne
1971; Sorenson 1988) and is given by the following two equa-
tions

p(x(k)|Zk−1, Uk−1) =
∫

p(x(k)|x(k − 1),

u(k − 1))p(x(k − 1)|Zk−1, Uk−2)dx(k − 1)

(2)

and

p(x(k)|Zk,Uk−1) = ckp(z(k)|x(k))p(x(k)|Zk−1, Uk−1),

k = 1, 2, . . . (3)

where 1
ck
= ∫

p(z(k)|x(k))p(x(k)|Zk−1, Uk−1)dx(k). Equa-
tion 2 is the Chapman–Komolgorov equation, and represents
the use of the dynamic model p(x(k)|x(k − 1),u(k − 1))
for state projection. Equation 3 is Bayes theorem, where
p(z(k)|x(k)) is the measurement model. The direct appli-
cation of eqs. (2) and (3) entails a computational burden
that grows exponentially with the number of features, ren-
dering such application computationally intractable for typ-
ical feature-based CML applications in environments with
hundreds or more features. Recent work in sequential Monte
Carlo methods (Doucet, de Freitas, and Gordan 2001) has
achieved successful performance for many challenging non-
linear, non-Gaussian state estimation problems; difficulties
are encountered, however, in the application of sequential
Monte Carlo methods in high-dimensional state spaces (Mac-
Cormick 2000).
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Equations 2 and 3 assume that the correspondence problem
is known. When data association uncertainty (the correspon-
dence problem) is added to the formulation, we are left with a
hybrid (mixed continuous/discrete) estimation problem. Mori
et al. (1986) published a general recursive non-linear, non-
Gaussian algorithm for state estimation with assignment am-
biguity. Their solution generalized an earlier linear-Gaussian
method by Reid (1979), known as multiple hypothesis track-
ing (MHT). The solution builds an exponentially growing tree
of hypotheses, with each leaf of the tree implementing a dif-
ferent solution to eqs. (2) and (3), based on different hypoth-
esized assignments. Probabilities are assigned recursively to
each discrete hypothesis, and pruning is used to restrict the
number of hypotheses. While the Mori et al. (1986) solution
can accommodate general non-linear, non-Gaussian models,
to our knowledge it has never been implemented without sim-
plifying assumptions. Even with the linear-Gaussian assump-
tions made by Reid’s algorithm, the method is exponentially
complex due to the combinatorics of discrete decision making.
The problem bears some resemblance to object recognition in
computer vision (Grimson 1990).

It is unclear how to incorporate variable-dimensionality
(initialization of new features based on state estimates for the
robot and other features in the map) into the Mori et al. (1986)
algorithm. Hence, it is unclear if we can consider the Mori
et al. (1986) as the general solution to eq. (1) for the CML
problem. Our current opinion is that, because of the inter-
actions between uncertainty and computational complexity,
from a general theoretical perspective CML is an “unsolved”
problem.

2.2. Linear-Gaussian Approximate Algorithms for CML

The method published in Smith, Self, and Cheeseman (1987)
is a linear-Gaussian approximation to the general solution of
eqs. (2) and (3). Non-linear functions are linearized via a Tay-
lor series expansion and all probability distributions are ap-
proximated by Gaussian distributions. State updates are per-
formed with the EKF. With these approximations, and assum-
ing that data association is known, the computational com-
plexity is reduced to O(n2) (Moutarlier and Chatila 1989).

The method recursively computes a state estimate x̂(k|k) =
[x̂r (k|k)T x̂f (k)

T]T at each discrete time step k, where x̂r (k|k)T

and x̂f (k)
T = [x̂f1(k)

T . . . x̂fn(k)
T]T are the robot and feature

state estimates, respectively. Based on assumptions about lin-
earization and data association, this estimate is the approxi-
mate conditional mean of p(x(k)|Zk,Uk−1):

x̂(k|k) ≈ E(x(k)|Zk,Uk−1). (4)

Associated with this state vector is an estimated error covari-
ance, P(k|k), which represents the errors in the robot and
feature locations, and the cross-correlations between these
states:

P(k|k) =
[

Prr (k|k) Prf (k|k)
Pf r (k|k) Pff (k|k)

]

=




Prr (k|k) Prf1(k|k) · · · Prfn (k|k)
Pf1r (k|k) Pf1f1(k|k) · · · Pf1n(k|k)

...
...

. . .
...

Pfnr (k|k) Pfnf1(k|k) · · · Pfnfn (k|k)


 .

(5)

The method uses three models: a plant model f(·), a mea-
surement model h(·), and a feature initialization model g(·). In
this paper we focus on g(·), presenting a generalized model for
feature initialization from multiple uncertain vantage points.
The plant model f(·) is used to make predictions of future
vehicle positions based on a control input. The observation
model, h(·), defines the non-linear coordinate transformation
from state to observation coordinates. For a more general dis-
cussion of these models, see Feder and Leonard (1999) or one
of the other references on feature-based CML listed above in
Section 1. Before considering the problem of feature initial-
ization in more detail, we now provide a discussion of the data
association problem for CML.

2.3. Data Association

To use the models h(·) and g(·) properly, stochastic mapping
algorithms must make decisions about the origins of mea-
surements. Spurious measurements must be ignored; how-
ever, it is often unclear which measurements are spurious.
Measurements that are determined to originate from previ-
ously mapped features are used via h(·) to perform a state
estimated update. Measurements that are determined to orig-
inate from a new feature are used with g(·) to add the feature
to the map.

While there is no mention of the data association problem
in Smith, Self and Cheeseman (1987), it is a crucial aspect of
the CML problem. The options for data association are rather
limited. Powerful tools exist, such as MHT (Reid 1979) or
probabilistic data association filter (PDAF) (Bar-Shalom and
Fortmann 1988), but the computational burden of these ap-
proaches is very high when these techniques are applied to
CML. The usual alternative is to employ “nearest-neighbor”
gating techniques. For each feature in the state vector, pre-
dicted range and angle measurements are generated and are
compared against the actual measurements using a weighted
statistical distance in measurement space. For all measure-
ments zj (k) that can potentially be associated with feature
x̂fi (k), the innovation, νij (k), and the innovation covariance,
Sij (k), are constructed and the closest measurement within
the “gate” defined by the Mahalanobis distance

νij (k)
TSij (k)

−1νij (k) ≤ γ, (6)

is considered the most likely measurement of that feature
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(Bar-Shalom 1988). Such an approach will fail if the features
in the environment are too close to one another.

In addition, simply testing the proximity of observations to
predicted measurements for previously mapped features pro-
vides no indication of when a measurement comes from a new
feature. Feature initialization is typically based on looking for
several consecutive unexplained measurements that are close
to one another, and far from any previously matched features.
This policy is referred to as delayed track initiation (Leonard
and Durrant-Whyte 1992; Feder, Leonard, and Smith 1999;
Dissanayake et al. 2001). In general, there is a trade-off be-
tween being more likely to assign a measurement to an old
feature, versus using it to initialize a new feature. If we are
able to perform feature fusion (Chong and Kleeman 1997),
then it is probably better to err on the side of new feature
creation. This is the strategy employed in our experiments in
Section 5.

A variety of methods for attacking the correspondence
problem have been developed in vision, such as RANSAC
(Fischler and Bolles 1981). The general idea is to use tech-
niques from robust statistics to find sets of measurements
that collectively reinforce one another and yield a single,
consistent interpretation. Recently, Neira et al. (2001) have
presented a joint compatibility testing method for data as-
sociation that exploits correlation information when con-
sidering potential assignments for groups of measurements.
The method succeeds in ambiguous situations when standard
nearest-neighbor gating fails. The general policy of looking
for consensus among multiple measurements to resolve ambi-
guity is similar in spirit to RANSAC. Other data association
strategies specific to sonar have been proposed; for exam-
ple, Wijk and Christensen (2000) have recently developed a
technique called triangulation-based fusion (TBF) that pro-
vides excellent performance for detection of point features
from ring sonar data. The TBF method looks for sets of sonar
returns obtained from adjacent positions that could all have
originated from the same point object, by efficiently comput-
ing circle intersection points and applying angle constraints.
The method runs in real time and has been successfully used
for occupancy grid mapping, model-based localization, and
relocation (Wijk and Christensen 2000). CML has also been
implemented using the TBF for points features (Zunino and
Christensen 2001).

In this paper, we use manual data association in Section 4
to illustrate various new types of feature initialization, and we
use a Hough transform voting technique, fully documented in
Tardós et al. (2001), to perform initialization of new point and
line features when performing real-time CML in Section 5.

2.4. Feature Initialization in Smith, Self, and Cheeseman

The algorithm of Smith, Self and Cheeseman (1987) adds new
features to the map using the linear-Gaussian approximation
in the following manner. The method assumes that the state

of the new feature, x̂fn+1(k) can be computed using the mea-
surement data available from a single vehicle position, using
a feature initialization function g(·):

x̂fn+1(k) = g(x̂(k|k), zj (k)). (7)

For example, for a sensor providing range and bearing mea-
surements, zj (k) = [r θ ]T, the feature initialization function
for a point g(·) takes the following form:

x̂fn+1(k) = g(x̂(k|k), zj (k)) =
[
xr + r cos(φ + θ)

yr + r sin(φ + θ)

]
. (8)

The new feature is integrated into the map by expanding the
state vector x̂(k|k) and covariance P(k|k) as shown below

x̂(k|k)←
[

x̂(k|k)
x̂fn+1(k)

]
, (9)

P(k|k)←

 Prr (k|k) Prf (k|k) Prfn+1(k|k)

Pf r (k|k) Pff (k|k) Pffn+1(k|k)
Pfn+1r (k|k) Pfn+1f (k|k) Pfn+1fn+1(k|k)


 ,

(10)

where

Pfn+1fn+1(k|k) = GxP(k|k)GT
x +GzR(k)GT

z , (11)

[
Pfn+1r (k|k) Pfn+1f (k|k)

] =
[

Pfn+1r (k|k)
Pfn+1f (k|k)

]T

= GxP(k|k).
(12)

Gx is the Jacobian of g(·) with respect to the state vector, and
Gz is the Jacobian of g(·) with respect to the measurement.

3. Mapping Partially Observable Features using
an Extended Representation

As mentioned above, the method of Smith, Self and Cheese-
man (1987) assumes that there is sufficient information in the
set of measurements available from a single robot position
to completely and consistently initialize a new feature into
the map. To enable CML in situations where this is not the
case, we add past vehicle positions to the state vector and
maintain explicitly estimates of the correlations between cur-
rent and previous vehicle states. By incorporating past vehicle
locations in the state vector, it becomes possible to make im-
proved probabilistic data association and feature classification
decisions and to initialize new map features by consistently
combining data from multiple vantage points.

The motivation for the new approach is the following. If the
sensor observations available from a single time step do not
provide sufficient information to initialize the state estimate
of a newly detected feature, then information from multiple
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vehicle positions must be used. To maintain consistent error
bounds, correlations between different vehicle locations must
be taken into account by the CML algorithm. Furthermore,
decisions that are difficult based on the data from a single
position (such as the disposition of an individual sonar re-
turn) can be made much easier when considered as delayed
decisions, using data from multiple vehicle positions. Mea-
surements can also be applied asynchronously, in batches of
data from sequences of positions.

To achieve these capabilities, we expand the representation
to add a number of previous vehicle locations to the state vec-
tor. We refer to past vehicle states that are part of the stochas-
tic map as “trajectory states”. We introduce the notation xtk

(equivalent to xr (k)) to refer to the true state (pose) of the
robot at time k = t .

Using trajectory states, the CML problem embodied by
eq. (1) is restated in expanded form as the recursive compu-
tation of

p(x(k), Ak|Zk,Uk−1) = p(xt0 , xt1 , . . . , xtk−1 , xr (k),

xf1(k), . . . , xfnk
(k), Ak|Zk,Uk−1).

(13)

Expanding the representation in this manner provides a new
general framework for feature-based CML.

While the approach is generally applicable using any state
estimation framework, in this paper we describe the imple-
mentation of the approach in the context of stochastic map-
ping, yielding a method we refer to as “delayed stochastic
mapping”. The new method is summarized in Figure 3. The
new components of the framework include trajectory state
management, perceptual grouping, multiple vantage point ini-
tialization, and batch updating.

Each time the vehicle moves, the previous vehicle location
is added to the state vector. We introduce the notation x̂ti (k)

(equivalent to x̂r (i|k)) to refer to the estimate of the state
(position) of the robot at time i given all information up to
time k. The complete trajectory of the robot for time step
0 through time step k − 1 is given by the vector x̂t (k) =
[x̂t0(k)

T x̂t1(k)
T x̂t2(k)

T . . . x̂tk−1(k)]T. The complete state
vector is

x̂(k|k) =

x̂r (k|k)

x̂t (k)

x̂f (k)


 =




x̂r (k|k)
x̂t0(k)

x̂t1(k)

x̂t2(k)
...

x̂tk−1(k)

x̂f1(k)

x̂f2(k)

x̂f3(k)
...

x̂fn−1(k)

x̂fn(k)




. (14)

The associated covariance matrix is

P(k|k) =

Prr (k|k) Prt (k|k) Prf (k|k)

Ptr (k|k) Pt t (k|k) Ptf (k|k)
Pf r (k|k) Pf t (k|k) Pff (k|k)


 , (15)

or equivalently,

P(k|k) =




Prr (k|k) Prt0 (k|k) . . . Prtk−1 (k|k)
Pt0r (k|k) Pt0t0 (k|k) . . . Pt0tk−1 (k|k)

.

.

.
.
.
.

. . .
.
.
.

Ptk−1r (k|k) Ptk−1t0 (k|k) . . . Ptk−1tk−1 (k|k)
Pf1r (k|k) Pf1t0 (k|k) . . . Pf1tk−1 (k|k)

.

.

.
.
.
.

. . .
.
.
.

Pfnr (k|k) Pfnt0 (k|k) . . . Pfntk−1 (k|k)

Prf1 (k|k) . . . Prfn (k|k)
Pt0f1 (k|k) . . . Pt0fn (k|k)

.

.

.
. . .

.

.

.

Ptk−1f1 (k|k) . . . Ptk−1fn (k|k)
Pf1f1 (k|k) . . . Pf1fn (k|k)

.

.

.
. . .

.

.

.

Pfnf1 (k|k) . . . Pfnfn (k|k)




.

(16)

New trajectory states x̂tk (k) = x̂r (k|k) are generated at
each time step and are added to the state vector:

x̂(k|k)←




x̂r (k|k)
x̂t0(k)

x̂t1(k)

x̂t2(k)
...

x̂tk−1(k)

x̂tk (k)

x̂f (k)




. (17)

The state covariance is expanded as follows

P(k|k)←




Prr (k|k) Prt0 (k|k) . . . Prtk−1 (k|k)
Pt0r (k|k) Pt0t0 (k|k) . . . Pt0tk−1 (k|k)

.

.

.
.
.
.

. . .
.
.
.

Ptk−1r (k|k) Ptk−1t0 (k|k) . . . Ptk−1tk−1 (k|k)
Ptkr (k|k) Ptk t0 (k|k) . . . Ptk tk−1 (k|k)
Pf r (k|k) Pf t0 (k|k) . . . Pf tk−1 (k|k)

Prtk (k|k) Prf (k|k)
Pt0tk (k|k) Pt0f (k|k)

.

.

.
.
.
.

Ptk−1tk (k|k) Ptk−1f (k|k)
Ptk tk (k|k) Ptkf

(k|k)
Pf tk

(k|k) Pff (k|k)



,

(18)

where Ptk ti (k|k) = Prti (k|k), Ptkf (k|k) = Prf (k|k), and
Ptk tk (k|k) = Prr (k|k).

The growth of the state vector in this manner increases the
computational burden as O(n2), so caution must be taken. The
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1. while active mission do

2. x̂(k|k − 1) = f(x̂(k − 1|k − 1),u(k)) {state projection}

3. P = FxPFT
x +Q {covariance projection}

4. ẑ(k) = h(x̂(k|k − 1)) {sensor prediction}

5. (a,¬a)← (z(k), ẑ(k)) {data association}

6. S = HxPHT
x + R {innovation covariance}

7. K = PHx
TS−1 {Kalman gain}

8. x̂(k|k) = x̂(k|k − 1)+K(za − ẑa) {Kalman state update}

9. P = P −KSKT {Kalman covariance update}

10. x̂(k|k)←
[

x̂(k|k)
g(x̂(k|k), z¬a)

]
{mapping state}

11. P←
[

P PGT
x

GxP GxPGT
x +GzRGT

z

]
{mapping covariance}

12. k = k + 1

13. end while

1. while active mission do

2. x̂(k|k − 1)←
[

f(x̂r (k − 1|k − 1),u(k))
x̂(k − 1|k − 1)

]
{state augmentation with projection}

3. P←
[

FxPFT
x +Q FxP

PFx
T P

]
{covariance augmentation with projection}

4. ẑ(k) = h(x̂(k|k − 1)) {sensor prediction}

5. (a,¬a)← (z(k), ẑ(k)) {data association}

6. S = HxPHT
x + R {innovation covariance}

7. K = PHx
TS−1 {Kalman gain}

8. x̂(k|k) = x̂(k|k − 1)+K(za − ẑa) {Kalman state update}

9. P = P −KSKT {Kalman covariance update}

10. x̂(k|k) =
[

x̂(k|k)
g(x̂(k|k), z¬a)

]
{mapping state}

11. P←
[

P PGT
x

GxP GxPGT
x +GzRGT

z

]
{mapping covariance}

12. Contract the state x and covariance P to remove unnecessary trajectory states and associated terms in
the covariance matrix

13. k = k + 1

14. end while

Fig. 3. Comparison of conventional stochastic mapping (top) and delayed stochastic mapping (bottom). The notation is
summarized as follows: x is the state vector; P is the covariance; F,G, and H are the Jacobians of their respective non-linear
functions; Q and R are the propagation and measurement covariance matrices; u is the control input; z are the observations;
a labels associated observations; ¬a labels unmatched observations.
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new problem of trajectory state management is introduced.
Old vehicle trajectory states and associated terms in the co-
variance need to be deleted once all the measurements from
a given time step have been either processed or discarded.
In practice, we have seen excellent performance by keeping
the number of trajectory states restricted to a fixed size of 40.
With a fixed window size, the process of adding past states is
similar to a fixed-lag Kalman smoother (Anderson and Moore
1979).

3.1. Perceptual Grouping

The next step in the framework is to apply a perceptual group-
ing algorithm to examine collectively the entire set of data
that came from the current and past vehicle positions cur-
rently in the map. Instead of being forced to make an instan-
taneous decision about the origins of current measurements,
delayed decision making is now possible. In general, a wide
variety of perceptual grouping algorithms are possible, such
as the RANSAC (Fischler and Bolles 1981) and least median
(Faugeras, Luong, and Papadopoulo 2001) methods that have
been successfully employed in vision. The subject of delayed
decision making is very broad in scope, and in this paper we
focus on the state estimation aspects of the problem only. For
now, we assume that some perceptual grouping algorithm has
been employed to classify and associate measurements. Fur-
ther discussion of perceptual grouping is contained below in
Section 5.

3.2. Feature Initialization using Data from Multiple Vantage
Points

Given decisions about the origins of measurements from mul-
tiple vantage points, the next step is to use the trajectory states
and associated correlation information to initialize new fea-
tures using measurements from multiple vantage points. Sup-
pose that a perceptual grouping method has produced a set of
candidate measurements, ZC , from a set of vehicle positions
that are currently contained in the set of active trajectory states
of the stochastic map. Initialization can then be performed by
picking a minimal subset ZS of “seed” features from ZC that
are sufficient to estimate the state of the new feature. Let XS

be the set of vehicle positions for the measurements in ZS .
Then, the location of the new feature can be computed as

x̂fn+1 = g(XS, ZS). (19)

For example, consider the initialization of a new point fea-
ture in two dimensions, using two range measurements, r1 and
r2, taken at time steps k1 and k2. The function g(·) represents a
solution for the intersection of two circles. The algebra is very
simple and is reviewed in Appendix A. The beamwidth of the
sonar sensor can be used as an angle constraint to rule out mul-
tiple solutions (Leonard and Durrant-Whyte 1992; Wijk and

Christensen 2000). The covariance for the new feature is ini-
tialized in a similar fashion as shown above in eqs. (10)–(12),
except that the Jacobian matrix Gx will contain additional
non-zero terms corresponding to the trajectory states and the
Jacobian matrix Gz. The direct differentiation of the multiple
vantage point initialization function can be cumbersome. It is
possible, however, to compute the initialization Jacobians by
inverting the Jacobian of the composite function of minimal
observations, as follows

Gz = H−1
y , (20)

and

Gx = −H−1
y Hx, (21)

where y = xfn+1 is the state estimate for the new feature. This
is possible because Hy is a square matrix with full rank.

An alternative is to compute the Jacobians numerically
(Durrant-Whyte, Julier, and Ulhmann 1996); this is the ap-
proach used for the results in this paper. For initialization of a
line feature from two positions with two sonar measurements,
the function g(·) represents the solution for the common tan-
gents of two circles. The general procedure is the same if the
feature initialization function g(·) is a function of measure-
ments from more than two time steps, for example to initialize
a cylinder using three range values.

3.3. Batch Updating

Once a new feature is initialized, the map can be simultane-
ously updated using all other previously obtained measure-
ments that can be associated with the new feature (measure-
ments that are elements of ZC but not elements of ZS). This
update is performed using a composite measurement vec-
tor, consisting of measurements obtained for different time
steps. We call this procedure a “batch update”. It allows the
maximum amount of information to be extracted from all
past measurements. Empirically, we have observed that the
EKF can be less prone to divergence when batch updates are
performed.

To update the robot history and features using a batch of
measurements, a measurement vector zB is constructed from
an appropriate temporal observation set:

zB =




z(k − δ0)

z(k − δ1)

z(k − δ2)
...

z(k − δn)



. (22)
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z[k]z[k-1]

xr[k-1|k]

Prr[k-1|k]

P
rr
[k|k]

Stored, Uncertain Vehicle Trajectory, T

New feature initialised by
combining observations from

multiple uncertain vantage
points

Stored
Observations Z

x
r
[k|k]

xf[k|k]=g(Z,T)

Pff [k-1|k]

Fig. 4. Illustration of initialization from multiple vantage points.

An appropriate predicted measurement vector is constructed:

ẑB =




h(x̂r (k − δ0), x̂f (k))

h(x̂r (k − δ1), x̂f (k))

h(x̂r (k − δ2), x̂f (k))
...

h(x̂r (k − δn), x̂f (k))



. (23)

This leads to an innovation which includes observations from
across multiple time steps:

ν =




z(k − δ0)− h(x̂r (k − δ0), x̂f (k))

z(k − δ1)− h(x̂r (k − δ1), x̂f (k))

z(k − δ2)− h(x̂r (k − δ2), x̂f (k))
...

z(k − δn)− h(x̂r (k − δn), x̂f (k))



. (24)

Similarly, the measurement Jacobian Hx is constructed, as is
the measurement covariance R:

Hx =




Hxr (k−δ0),xf (k)

Hxr (k−δ1),xf (k)

Hxr (k−δ2),xf (k)

...

Hxr (k−δn),xf (k)




(25)

R = (26)



R(k − δ0) 0 0 . . . 0
0 R(k − δ1) 0 . . . 0
0 0 R(k − δ2) . . . 0
...

...
...

. . .
...

0 0 0 . . . R(k − δn)



.

Using these components and the standard Kalman update
equations, all robot trajectory positions and all features that
are currently in map are concurrently updated.

3.4. Composite Initialization

In general, the feature initialization function can use any of the
information in the state estimation x̂ for the stochastic map,
including the locations of other previously mapped features
as well as as previous vehicle states. The new feature location
can be a function of one or more previous mapping features,
x̂fi , one or more measurements, and the robot state estimate
corresponding to these measurements. For example, we can
initialize a line that passes through a point feature x̂fi and
is tangent to one sonar return zj (k). In this case, the feature
initialize function is of the form:

x̂fn+1 = g(x̂fi , x̂r (k), zj (k)). (27)

Alternatively, we can initialize a point that lies at the intersec-
tion of a line currently in the map and a new sonar return. The
equations for these two initialization scenarios are described
in Appendix A 1.3. We can also initialize a new feature without
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any measurements, for example, hypothesizing the constraint
that a new point feature exists at the intersection of two line
segments currently in the map. Examples with real data for
several of these scenarios are given below in Section 4.

3.5. Extension to Mapping by Multiple Robots

Cooperative stochastic mapping with perfect communications
requires adding robots to the state vector (Fenwick, Newman,
and Leonard 2002). Although there are numerous technical
issues to overcome, from a state estimation perspective it is
relatively straightforward to perform feature initialization us-
ing data from multiple robots. By using trajectory states, such
initializations can occur on a delayed basis, removing the re-
quirement for the two robots to sense the features in question
at precisely the same time. It is also possible for one robot to
“map” the location of another robot (add the other robot to its
state vector), through processing measurements of common
features (assuming that association is known). A simplified
example of how this process can work is shown below in Sec-
tion 4.

4. Examples Using Manual Association

We now present several illustrations of the concepts presented
above using real sonar data sets with manual data association.
The first experiment uses 500 kHz underwater sonar data ac-
quired in a testing tank, and the second experiment uses data
from a ring of 24 Polaroid sonar sensors. Both experiments
use manually-guided data association strategies that exploit
a priori knowledge of the environment. While both environ-
ments are highly simplified, they are useful in illustrating the
state estimation process for mapping from multiple uncertain
vantage points. Fully automatic data association is used in the
experiments in Section 5, as part of an integrated system that
can perform CML in real-time using odometry and wide-beam
sonar measurements.

4.1. Tank Experiment

An experiment was conducted using a robotic gantry to em-
ulate the motion and sensing of an underwater vehicle. A
500 KHz binaural sonar was used (Kuc 1996; Au 1993). To
show mapping of partially observable features, bearing infor-
mation was discarded. Two objects were placed in the tank,
a metal triangle and a point-like object (a fishing bobber).
The gantry was moved through two trajectories, one to the
left and one to the right of the objects, emulating cooperative
CML by two vehicles. All processing was post-processing.
Data association was done by hand since it is not the focus of
this paper. The manually-associated returns used for feature
initialization are labeled in Figures 7 and 10 and are listed
in Table 1. The initialization strategies used for each feature
and for the position of the second robot are listed in Table 2.
We consider the set of measurements from the right side of

the objects to originate from “robot 1” and the measurements
from the left side to be from “robot 2”.

The gantry operates in a tank that is 10 m long by 3 m wide
by 1 m deep. The mechanism provides ground-truth good to a
few millimeters. Simulated speed and heading measurements
were generated and used for dead-reckoning. Initially, the sen-
sor dead-reckoned through a trajectory of 11 positions, as
shown in Figure 5. Upon completing this trajectory, the robot
had a state vector and covariance matrix which contained only
robot states, one estimate for each position. In Figure 6, the
correlation coefficients for the x components of the trajectory
are plotted. Each line represents the correlations between one
time step and all other saved time steps. Because this is a short
dead-reckoned trajectory, each curve has only one maxima;
more complex trajectories may have numerous local maxima.

The assumed range measurement standard deviation was
3 cm for each measurement. The added process noise had a
standard deviation of 1 cm per time step in x and y and 2
degrees per time step in heading.

The data processing was performed as follows. First, state
projection was performed and trajectory states were created
for robot 1 for time steps 1–11, without any measurements
being processed. The three-σ error bounds for the dead-
reckoned (x, y) trajectory of robot 1 are shown in Figure 5.
The correlation coefficients between the x coordinates of the
robot trajectory states are plotted in Figure 6.

Having an entire trajectory of positions, robot 1 starts to
construct its map. Because the robot uses a range measure-
ments only, features must be observed from multiple vantage
points to be mapped. By combining Returns 1 and 5 (labeled
in Figure 7), the robot initializes the point object at the bottom
of its map (Figure 7). Similarly, by intersecting two more arcs
(Returns 2 and 6), the bottom corner of the triangle is mapped.
The equations for arc intersection are given in Appendix A 1.1.
Next, Return 4 is used in conjunction with the estimated loca-
tion of the bottom corner of the triangle to add the right wall
of the triangle to the map. Finally, by intersecting Return 3
with the estimated line corresponding to the right wall, the top
corner is added to the map. Using these observations, the point
object and the side of the triangle are initialized (Figure 8).

The wall is represented in the map by an infinite line with
two parameters, ρ and θ , which are the angle and offset of
the normal with respect to the origin. The dashed lines in
Figures 7 and 8 show the extension of the estimated line.

After initializing the features, all other observations are
used for a batch update of the newly initialized features (Fig-
ure 9). Mapping and navigation are improved substantially.
Robot 1 obtained 29 total measurements. Of these, six were
used for initialization and 23 were used batch updating.

Next, robot 1 tries to use information from robot 2. We
assume that there is no a priori information for the initial
location of robot 2, and that hence robot 2 must be initialized
into the map using shared measurements of features seen by
both robots.
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Table 1. Details for the Ten Manually-selected Returns Used for Feature Initialization

Return number Robot Time Step Odometry X (m) Odometry Y (m) Range (m)

1 1 1 0.0 0.0 1.0036
2 1 1 0.0 0.0 1.8058
3 1 3 0.0045 0.4992 1.8380
4 1 8 −0.0399 1.7637 0.9504
5 1 11 −0.0235 2.537 2.7205
6 1 11 0.0235 2.5373 1.4192
7 2 1 (unused) (unused) 0.9773
8 2 1 (unused) (unused) 1.7851
9 2 2 (unused) (unused) 1.0054
10 2 2 (unused) (unused) 1.5692

Table 2. Method of Initialization for Features
Feature Initialization Method

Point object Return 1 and Return 5
Lower right vertex of triangle Return 2 and Return 6

Right plane of triangle Lower right vertex of triangle and Return 4
Upper right vertex of triangle Right plane of triangle and Return 3

Position 1 for robot 2 Point object and Returns 7 and 8
Position 2 for robot 2 Point object and Returns 9 and 10

Table 3. Comparison of Hand-measured and Estimated Feature Locations for Points Features (in
meters)

Hand measured CML estimated
Feature x y x y

Point object −1.0 0.0 −1.0054 0.0109
Lower right vertex of triangle −1.0 1.5 −0.99 1.5045
Upper right vertex of triangle −1.0 2.05 −0.9922 2.0837
Left vertex of triangle −1.4763 1.77 −1.4908 1.7846
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Fig. 7. Set of observations used to initialize the side of the triangle and the point object. Two observations are needed to
initialize the point target, two more are needed to initialize the corner of the triangle. Given the constraint of the corner, only
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Fig. 8. Initial map. 99% confidence intervals for the corners and the point object are shown.
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experiment 4: complex initializations of partially observable objects

Fig. 9. Map after a batch update. Note the improved confidence intervals for the features and the robot.

It is determined that robot 2 has observed features in the
map of robot 1. From the ranges to the point object and the
bottom corner of the triangle, (Returns 7–10 as labeled in
Figure 10) the first two positions of robot 2 can be observed.
Those two positions are initialized into the map, and their ini-
tialization function is of the form g(xfr1 , zr2), meaning that
robot 2 is added to the map of robot 1 using robot 2’s obser-
vations of features that have been previously mapped by robot
1 (Figure 11).

Next, using the first two estimated positions for robot 2, the
initial heading and velocity of robot 2 are mapped. Using this
information, along with the control inputs, a dead-reckoned
trajectory for robot 2 is established (Figure 12). Because nei-
ther compass nor velocity observations are available, and be-
cause the initial estimates of velocity and heading for robot 2
are imprecise, the trajectory is imprecise and has large error
bounds.

Having a dead-reckoned trajectory for robot 2 and its mea-
surements, robot 1 then maps the (otherwise unobservable)
back side of the triangle and performs a batch update to get
an improved map and an improved estimate of where robot
2 traveled (Figure 13) . Robot 2 obtained 22 total measure-
ments. Of these, four measurements were used to initialize
the position of robot 2 in the stochastic map of robot 1. Two
measurements were used in initializing features on the left
side of the triangle, and the remaining 16 returns were used
in batch updating.

The error bounds for robot 2 do not exhibit the growth
profile that is normally seen. Normally, since the robot starts
with an initial position estimate and then moves, the uncer-
tainty grows with time. In this case, since the second robot
is mapped and localized with respect to previously mapped
features, the smoothed estimate of its trajectory has the least
uncertainty in the middle (Figure 14).

The next experiment is for data from a simple “box” en-
vironment made of plywood, demonstrating the process of
multiple vantage point initialization, batch updating, and com-
posite feature initialization. The data association and feature
modeling techniques utilize the a priori knowledge of the
structure of the box, namely that each corner of the box was
created by two walls, and that each wall was bounded at each
end by a corner. The input data consists of 600 sonar returns
acquired from a sequence of 50 positions that form one-and-
a-half loops around the inside of the box. The vehicle started
in the lower left corner facing upward.

The data processing proceeded as follows. First, state pro-
jection was performed and trajectory states were created for
time steps 1–50, without any measurements being processed.

At each processing cycle, a new vehicle trajectory state was
added to the system state vector, using eqs. (17) and (18). The
dead-reckoned vehicle trajectory is shown in Figure 16(b).
After 50 cycles, a manually-guided search strategy was per-
formed to find nine returns that were used to initialize nine
features (the four corners and four walls of the box and a
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Fig. 10. Adding in the second robot. The true trajectory for robot 2 is the line on the left. Observations of the bottom corner
of the triangle and of the fishing bobber are reversed to find the first two vantage points.
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Fig. 11. The first two positions for robot 2 are mapped. Using these two positions, it is possible to estimate the initial heading
and velocity.
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Fig. 12. Using the estimated initial heading and velocity for robot 2, along with its control inputs, a dead-reckoned trajectory
is constructed. With poor initial estimates of heading and velocity, and no compass or velocity measurements for updates, the
trajectory is very imprecise.
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experiment 8: cooperative using a robot of convenience

Fig. 13. Using information from robot 2, robot 1 is able to map the back side of the triangle, which it otherwise could not
observe. After the batch update, its estimate of robot 2 improves considerably.
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Fig. 14. Error in the smoothed estimate and three-σ confidence interval for the x position of robot 2. The minimum uncertainty
is in the middle of the trajectory due to forward/backward smoothing.

Fig. 15. B21 mobile robot in the plywood box.
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Fig. 16. (a) Set of all measurements processed, from 50 vehicle positions. Each sonar return is shown as a circular arc, with
rays drawn from the center of the dead-reckoned robot position to the center of each arc. (b) Dead-reckoned vehicle trajectory,
with three-σ error ellipses.
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prominent “crack” on the bottom wall). The nine returns and
the nine features are each labeled in Figure 17, and details of
initialization sequence are shown in Tables 4 and 5. Azimuth
information from the sonar returns was not used for gating
but not for estimation. The processing proceeded as follows.
First, Returns 1 and 2 were used to initialize Corner 1 using
a two position range-only initialization (circle intersection).
Next, Return 3 was used in conjunction with the state estimate
for Corner 1 to initialize Plane 1, and Return 4 was used in
conjunction with the state estimate for Corner 1 to initialize
Plane 2. After this, Return 5 was used in conjunction with the
state estimate for Plane 1 to initialize Corner 2, and Return 6
was used in conjunction with the state estimate for Plane 2 to
initialize Corner 3. Likewise, Return 7 was used in conjunc-
tion with the state estimate for Corner 2 to initialize Plane 3,
and Return 8 was used in conjunction with the state estimate
for Corner 3 to initialize Plane 4. Next, Return 9 and Plane 4
were used to initialized the crack on Plane 4. Finally, the state
estimates for Plane 3 and Plane 4 were used to initialize the
final feature, Corner 4.

After the initializations, nine constrained features (shown
in Figure 17) were mapped using nine range measurements
(shown in Figure 18). Once these features were initialized,
nearest-neighbor gating was performed between all of the re-
maining sonar measurements and the newly initialized map
features. A total of 217 of the original 600 measurements
were uniquely matched to one of the nine features shown in
Figure 19(a). Finally, Figure 19(b) shows the result when all
these measurements are applied in a single batch update, re-
sulting in a dramatic reduction in the uncertainty ellipses for
the estimated feature locations and in the complete trajectory
of the vehicle.

5. Integrated Concurrent Mapping and
Localization Results

The framework described above in Section 3 has been im-
plemented as part of an integrated framework for real-time
CML, which incorporates delayed state management, percep-
tual grouping, multiple vantage point initialization, batch up-
dating, and feature fusion. Figure 20 gives an overview of the
flow of information in the system.

For these experiments, a fixed size of 40 trajectory time
steps was utilized. Every 40 time steps, perceptual group-
ing was performed using the sonar returns from the past 40
time steps. In general, a wide variety of strategies for mak-
ing delayed data association decisions are possible within this
framework. In this paper, we do not attempt to describe a sin-
gle definitive decision-making policy, rather our goal is to
illustrate the process with a few representative examples with
sonar data. For the results reported here, we use a Hough trans-
form technique documented in Tardós et al. (2001). A brief
summary of the technique is as follows (Leonard, Newman,
Rikoski, Neira, and Tardós 2001).

The data from a standard ring of Polaroid sonar sensors
can be notoriously difficult to interpret. This leads many re-
searchers away from a geometric approach to sonar mapping.
However, using a physics-based sensor model, the geomet-
ric constraints provided by an individual sonar return can be
formulated (Leonard and Durrant-Whyte 1992). Each return
could originate from various types of features (point, plane,
etc.) or could be spurious. For each type of feature, there is a
limited range of locations for a potential feature that are pos-
sible. Given these constraints, the Hough transform (Ballard
and Brown 1982) can be used as a voting scheme to identify
point and planar features. More details on this technique are
contained in Tardós et al. (2001). The method is similar in
spirit to the TBF method of Wijk and Christensen (Wijk and
Christensen 2000), but can also directly identify specular pla-
nar reflectors from sonar data, which is vitally important in
typical man-made environments with many smooth walls.

The output from the Hough transform gives sets of mea-
surements with a high likelihood to originate from a single
point or plane feature. Each candidate set from the Hough
typically contains between 10 and 40 sonar returns hypothe-
sized to originate from a new feature. For each candidate set,
two returns are chosen to serve as “seed” features for the ini-
tialization, to be used in the function g(·), and the remaining
returns are used in a batch update. The first of the two “seed”
measurements is chosen to be the return in the candidate set
that originates from the earliest vehicle position from the set
of trajectory states. The other seed measurement is chosen
to be the earliest return that, when combined with the first
seed measurement, achieves a sufficient minimum baseline
for feature initialization (typically 0.6 m). Once a new feature
is initialized, it is discarded if it has too small a baseline. To
successfully distinguish doors from the walls in the corridor
experiment shown in Figure 1, a minimum valid line length
of 1.2 m is used for adding a feature into the map. (This re-
striction can be removed if the joint compatibility method of
Neira and Tardós (2001) is applied.)

For state estimation, we have a choice between two basic
strategies: (1) attempt to match individual measurements to
pre-existing features, or (2) use measurements exclusively for
new feature initialization and batch updating, followed by
feature fusion with previously mapped features to obtain error
reduction. A hybrid strategy that mixes both policies is also
possible. While we have had good success with either (1) only,
(2) only, or a mix of both, in this paper we focus on option (2),
namely new feature mapping followed by feature fusion; see
Ayache and Faugeras (Ayache and Faugeras 1989), Chong and
Kleeman (Chong and Kleeman 1997a), Tardós et al. (2001)
and Williams et al. (2001) for further discussion of feature
fusion. To determine when features should be fused together,
we use the Mahalanobis distance and nearest neighbor.

To illustrate the performance of the implementation, we
present results from two different simplified settings: one ex-
periment with two point objects only (cylinders of known
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Fig. 17. Nine measurements used to initialize nine new features, starting with the corner in the upper left of the figure, and
building in both directions around the room, closing the box in the lower right-hand corner. Three-σ error ellipses are shown
for the dead-reckoned vehicle positions for each of the returns.

Table 4. Details for the Nine Manually-selected Returns Used for Feature Initialization

Return Time Odometry Odometry Odometry
Heading (deg)

Range Azimuth

Number Step X (m) Y (m) (deg) (m) (deg)

1 27 0.0058 0.0002 −3.8264 1.5486 −0.3927
2 44 1.1949 0.5997 −7.8248 2.0303 4.3197
3 44 1.1949 0.5997 −7.8248 0.8706 3.2725
4 49 1.1998 0.0044 −8.9705 1.8202 −0.3927
5 16 1.1990 0.1490 −1.5643 1.4352 2.7489
6 36 0.0004 0.5950 −6.2571 1.3806 −1.9635
7 21 1.1995 0.0063 −3.1013 0.6280 3.2725
8 42 1.1949 0.5997 −7.1450 1.1788 −0.6545
9 50 1.1998 0.0044 −9.3471 0.8658 0.6545

Table 5. Method of Initialization for the Nine Features, and Comparison of Hand-measured and Actual Locations for
the Four Corners of the Box

Hand measured CML estimated
Feature Initialization Method x y x y

Corner 1 Returns 1 and 2 −0.6240 1.4153 −0.6564 1.4287
Plane 1 Corner 1 and Return 3
Plane 2 Corner 1 and Return 4

Corner 2 Plane 1 and Return 5 1.7652 1.4153 1.7838 1.4605
Corner 3 Plane 2 and Return 6 −0.6240 −0.5550 −0.6050 −0.6243
Plane 3 Corner 2 and Return 7
Plane 4 Corner 3 and Return 8
Crack Plane 4 and Return 9

Corner 4 Plane 3 and Plane 4 1.7652 −0.5550 1.7652 −0.5550
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Fig. 18. State estimates and three-σ error ellipses for the nine initialized features.

radii), and one experiment in the corridor shown in Figures 1
and 2. Videos of the replay of data processing for these two
experiments are accessible at www.ijrr.org.

The method has also been implemented running in real
time under manual control. To our knowledge, this is the first
successful feature-based CML implementation using sonar
sensing for which the robot was continually in motion and the
CML output was generated in real-time. (Chong and Klee-
man (1997a) implemented sonar-based mapping with a high-
performance sonar array that stopped to perform mechanical
scanning for each data acquisition cycle.) The method uses
the standard Polaroid sonar array on the B21 robot and can
be readily ported to any B21 mobile robot. Such a result has
not been achieved before because it has not been possible
without the expanded representation accounting for temporal
correlations, described in Section 3.

The method presented in this paper has also been used ex-
tensively in two other experimental systems. With sonar, using
RANSAC for perceptual grouping and the ATLAS framework
for scalable mapping (Bosse et al. 2002), we have mapped a
large portion of the MIT campus and demonstrated closure
of large loops, using only sonar and odometry data. A repre-
sentative result is shown in Figure 25. We have also extended
the framework presented in this paper to achieve robust three-
dimensional local mapping from omnidirectional video data
(Bosse et al. 2002).

6. Conclusion

In this paper we have described a generalized framework for
CML that incorporates temporal as well as spatial correla-

tions, allowing features to be initialized from multiple uncer-
tain vantage points. The method has been applied to Polaroid
sonar data from a B21 mobile robot, demonstrating the abil-
ity to perform CML with sparse and ambiguous data. These
experiments illustrate the benefits of adding past vehicle po-
sitions to the state vector, enabling stochastic mapping to be
performed in situations where the state of a feature can only
by partially observed from a single vehicle position and the
ambiguity of individual measurements is high.

6.1. Related Research

The notion of incorporating segments of the robot trajectory
in the state vector (instead of just the current robot state)
employed in this paper is similar in some respects to the work
of Thrun (2001) and Gutmann and Konolige (1999), which
also use the vehicle trajectory as one of the key elements of
the map representation. In our work, we only save partial seg-
ments of the vehicle trajectory, on an “as-needed” basis to
resolve data association and feature modeling ambiguity. We
believe that it is possible to pose the problem of stochastic
mapping without features, using only trajectory states. The
basic update operation would be to correlate the observed
sensor data from one position with that observed at another
position, and to formulate a measurement update function
h(·) that involves only trajectory states. For example, Car-
penter and Medeiros (2001) have reported CML results using
multibeam sonar images. Fleischer has employed smoothing
to good effect in a stochastic framework for undersea video
mosaicking (Fleischer 2000).

The methods of Thrun (2001) and Gutmann and Konolige
(1999) can compute position offsets for the robot by correlat-
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Fig. 19. (a) Sonar measurements that uniquely gated with the nine initialized features, to be used in the batch update. (b)
Feature location estimates, vehicle trajectory, and error ellipses after the batch update.
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Fig. 21. (a) Raw sonar data for experiment with two point objects, referenced to odometry. (b) Sonar returns matched to the
two features, referenced to the CML estimated trajectory. The experiment was 50 min long. The vehicle moved continuously
under manual control at a speed of 0.1 m per second, making about 15 loops of the two cylinders. (See Extension 1.)
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Fig. 22. Estimated error bounds for the experiment: top plots, three-σ bounds for x and y of the vehicle; next plot, x–y
correlation coefficient; next plot, three-σ bounds for vehicle heading; bottom four plots, three-σ bounds for the x and y

locations of the two features. There is no ground-truth for this experiment, however the vehicle returned to within a few inches
of the start position, commensurate with the CML algorithm state estimation error.
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Fig. 23. Raw data for corridor experiment, referenced to odometry.

ing the current laser scans with another previously obtained
laser scan. A benefit of this type of approach is that the data
association problem does not need to be solved for individual
sensor measurements. Very impressive experimental results
have been obtained with both approaches. With sonar, the raw
data is usually too noisy and ambiguous for these correlation-
based approaches to work.

Recent work in feature-based CML has shown the impor-
tance of maintaining spatial correlations between the state es-
timates for different features, in order to maintain consistent
error bounds (Castellanos and Tardós 2000; Dissanayake et al.
1999). The representation of spatial correlations results in an
O(n2) growth in computational cost (Moutarlier and Chatila
1989), where n is the number of features in the environment.
This has motivated techniques to address the map scaling
problem through spatial and temporal partitioning (Davison
1998; Leonard and Feder 2001; Guivant and Nebot 2001). In
the current paper we have not addressed the map scaling prob-
lem, however the paper provides a framework for increasing
the reliability of local map building. This is anticipated to
greatly expand the range of environments in which CML can
be successfully performed. For a given new type of environ-
ment, it is essential to establish reliable local mapping before
considering the large-scale mapping problem.

An alternative to achieve the sonar mapping results pre-

sented here is to use a custom sonar array that can classify and
initialize geometric primitives from a single vantage point.
The state-of-the-art in this area is exhibited by the work of
Kleeman et al. (Kleeman 2001; Heale and Kleeman 2001;
Chong and Kleeman 1997a; Kleeman and Kuc 1993). For
example, Chong and Kleeman (Chong and Kleeman 1997)
have used custom advanced sonar arrays to very good effect
in testing large-scale CML algorithms; since this is a scanning
sonar, the robot has to stop and scan at each location. However,
more recently, Heale and Kleeman (2001) have demonstrated
a small, multi-element sensor that performs rapid classifica-
tion to enable mapping while moving.

Nonetheless, attempting to perform CML with the stan-
dard ring of Polaroid sensors is an interesting and important
problem from both a practical and a basic science perspective.
The challenges of range-only interpretation explicitly capture
many important uncertainty management problems posed by
CML. The fundamental essence of sonar as a range-only sen-
sor providing only sparse information is maintained in a man-
ner that can be applied to alternative, more general situations,
such as multi-robot mapping. Much further research is neces-
sary to extend the approach to complex environments, such as
the mapping of underwater terrain; however, we anticipate the
generalized framework for CML presented here to be broadly
applicable in a variety of environments.
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(a)

(b)

(c)
Fig. 24. (a) CML estimated trajectory for corridor scene and estimated map consisting of points and line segments. Three-σ
error bounds are shown for the location of points. (b) Same plot as in (a), but with three-σ error bounds for lines added. (c)
Same plot as in (a), but with hand-measured model overlaid. (See Extensions 2 and 3.)
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Fig. 25. Map produced from B21 sonar data for several corridors of the MIT campus, created using the state estimation
framework described in Section 3 combined with RANSAC for perceptual grouping and the ATLAS framework for large-scale
mapping (Bosse et al. 2002). The mission was 50 min in duration and the vehicle traveled a distance of 481 m, with a peak
velocity of 0.3 m per second and an average velocity of 0.163 m per second. (See Extensions 4 and 5.)

6.2. Future Work

A number of important topics warrant consideration in future
work. In the results presented in this paper, new features were
mapped using an initialization function g(·) that determined
the location of a new map feature location as an explicit func-
tion of measurements from multiple uncertain vantage points.
An alternative is to use non-linear least squares performed
on many measurements, such as in a similar manner to bun-
dle adjustment (Triggs et al. 2000). Faugeras summarizes the
necessary formulae for computing the covariance matrix to
accompany the state estimate derived from the least-squares
optimization (Faugeras 1993), and this can be readily incor-
porated into the stochastic map.

Another interesting topic is adaptive feature initialization
and the integration of CML with closed-loop trajectory con-
trol. Strategies should be developed for controlling the robot
during the initialization of a feature, and in selecting which
measurements to use for performing the initialization. We can
incorporate an adaptive motion control step to direct the robot
to move to a better vantage point that will improve the in-
formation available to the robot in attempting to initialize a
feature. To provide improved stability, the addition of new
features to the state vector can be delayed to occur only when
the initializing Jacobians indicate that the new feature esti-
mate is well conditioned. It would be interesting to couple

this back to control the robot’s motion for data acquisition.
It is currently unclear how well the technique will perform

in situations with extremely poor dead-reckoning. As long as
the linearization assumptions of the EKF are satisfied, then the
state estimation framework presented here should be expected
to provide consistent initialization despite dead-reckoning er-
ror, by maintaining correlations between past and current ve-
hicle states. However, we expect any approach that uses the
EKF to fail when very large angular errors are encountered.
In addition, the task of perceptual grouping is reliant to some
extent on reasonably accurate dead-reckoning. Future work
is necessary to quantify these relationships over a range of
different operating conditions (e.g., environment with sparse
features).

In ongoing research, we are extending the framework pre-
sented in this paper to enable large-scale autonomous explo-
ration of unknown environments (Bosse et al. 2002; Newman,
Bosse, and Leonard 2002). The approach is also being ex-
tended to enable real-time cooperative navigation by multiple
AUVs (Fenwick, Newman, and Leonard 2002).

Appendix A: Functions for Initialization of
Features from Multiple Vantage Points

In this appendix we describe functions for initialization of
point and line measurements from multiple positions.
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1.1. Initializing a Point from Two Range Measurements

Observing the range from the robot to a point defines a circle
which the point must lie upon. Two observations define two
circles, the intersection of which defines two points. The am-
biguity is resolved through the use of additional information,
usually a third range measurement or a beamwidth constraint.
If the robot observes a point feature (x, y) from vantage points
(x1, y1) and (x2, y2), measuring ranges r1 and r2, two circles
can be defined:

(x − x1)
2 + (y − y1)

2 − r2
1 = 0 (28)

(x − x2)
2 + (y − y2)

2 − r2
2 = 0. (29)

The solution can be computed as follows

xp = ∓ (y2 − y1) γ

d2
−

(
r2

2 − r2
1

)
(x2 − x1)

d2
+ x1 + x2

2
(30)

yp = ± (x2 − x1) γ

d2
−

(
r2

2 − r2
1

)
(y2 − y1)

d2
+ y1 + y2

2
(31)

where

γ =
√(

(r2 + r1)
2 − d2

) (
d2 − (r2 − r1)

2
)

(32)

and

d2 = (x2 − x1)
2 + (y2 − y1)

2
. (33)

If γ is imaginary, then the circles do not intersect; see also
Wijk and Christensen (2000).

1.2. Initializing a Line from Two Range Measurements

There can be as many as four lines which are tangent to two
circles. Considering only the cases where the two circles are
tangent to the same side of the line, the two solutions are

θ = arctan
± (x2 − x1) γ

∓ (y2 − y1) γ − (x2 − x1) (r2 − r1)
(34)

ρ = ∓ (x1y2 − x1y1) γ + (y2 − y1) (r1y2 − r2y1)

(x2 − x1)
2 + (y2 − y1)

2 , (35)

where

γ =
√
(x2 − x1)

2 + (y2 − y1)
2 − (r2 − r1)

2
, (36)

and θ designates the angle of the normal of the line and ρ is
the perpendicular offset of the line from the origin. When γ

is imaginary then the circles are concentric and do not have a
cotangent.

1.3. Initializing a Line from a Range Measurement and a
Colinear Point

Initializing the line which is tangent to circle (x1, y1, r1) and
passes through point (x2, y2) is equivalent to finding the line
which is tangent to two circles when one of the circles has
zero radius. There are two solutions. The two results, (ρ1, θ1)

and (ρ2, θ2), are

d =
√
(x2 − x1)

2 + (y2 − y1)
2 (37)

θpc = arctan 2 (y2 − y1, x2 − x1) (38)

β = arccos
( r

d

)
(39)

θ1 = α + β (40)

θ2 = α − β (41)

[
xc1

yc1

]
=

[
x1 + r1 cos θ1

y1 + r1 sin θ1

]
(42)

[
xc2

yc2

]
=

[
x1 + r1 cos θ2

y1 + r1 sin θ2

]
(43)

α1 =
√
x2
c1 + y2

c1 (44)

α2 =
√
x2
c2 + y2

c2 (45)

β1 = arctan 2 (yc1, xc1) (46)

β2 = arctan 2 (yc2, xc2) (47)

ρ1 = α1 cos (θ1 − β1) (48)

ρ2 = α2 cos (θ2 − β2) . (49)

1.4. Initializing a Point from a Line and a Range
Measurement

A robot position and a range define a circle (x, y, r). Provided
that the circle intersects the line (ρ, θ), we want to find the
intersection points. First, we find the distance from the center
of the circle to the line, which is defined as

d = |ρ − x sin(θ)− y cos(θ)| . (50)
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This is the first leg of a right triangle. The hypotenuse is the
range measurement. The angle between the two is

β = arccos

(
d

r

)
. (51)

Knowing the bearing to the line is, by definition, θ , the two
intersections are therefore[

x1

y1

]
=

[
x + ρ cos (θ − β)

y + ρ sin (θ − β)

]
(52)

[
x1

y1

]
=

[
x + ρ cos (θ + β)

y + ρ sin (θ + β)

]
. (53)

Appendix B: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org.

Table of Multimedia Extensions
Extension Type Description

1 Video Sonar experiment with two ob-
jects

2 Video Measurement processing for
corridor experiment

3 Video Mapped features for corridor
experiment

4 jpg Map and odometry trajectory
for
large-scale experiment

5 jpg Perceptual grouping output for
large-scale experiment using
RANSAC
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