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An Evidential Approach to Map-Building
for Autonomous Vehicles

Daniel Pagac, Eduardo M. Nebot, and Hugh Durrant-Whyte

Abstract—In this work, we examine the problem of constructing and
maintaining a map of an autonomous vehicle’s environment for the pur-
pose of navigation, using evidential reasoning. The inherent uncertainty in
the origin of measurements of sensors demands a probabilistic approach
to processing, or fusing, the new sensory information to build an accurate
map.

In this paper, the map is based on a two-dimensional (2-D) occupancy
grid. The sensor readings are “fused” into the map using the Demp-
ster–Shafer inference rule. This evidential approach with its multivalued
hypotheses allows quantitative analysis of the quality of the data. The
map building system is experimentally evaluated using sonar data from
real environments.

I. INTRODUCTION

The basic feature of an autonomous mobile robot is the capacity to
operate independently in unknown or partially known environments.
The term autonomous implies that the robot should be capable of
reacting to static obstacles and unpredictable dynamic events which
may impede the successful execution of a task. To achieve this
level of robustness, processes need to be developed to provide solu-
tions to localization, map-building, and navigation/obstacle avoidance
problems. It could be argued that the map building task (updating
obstacle locations relative to the AGV’s position) and the localization
problem (updating AGV’s position relative to the environment) can
be thought of as essentially a single process. However, in our view,
these processes are quite distinct and independent since each may
employ a separate set of sensors and processing algorithms. In this
paper, we limit the scope to the problem of map building with
particular reference to modeling of ultrasonic sensor information and
probabilistic reasoning in map construction.

With a variety of sensor models, research is concentrated in two
areas: the occupancy based map building (Elfes [3], Matthies and
Elfes [7], and Lim and Cho [6]) and beacon recognition and tracking
(Barshan and Kuc [1], Leonard and Durrant-Whyte [5], McKerrow
[8]). The two approaches are, by no means mutually exclusive, in fact
they supplement each other’s weaknesses. The building of occupancy
maps is well suited to path planning, navigation and obstacle avoid-
ance because it explicitly models free space. However, occupancy
maps are poor at localization (expensive algorithms are required, e.g.,
pattern matching). Consequently, beacon based methods have been
successfully applied to the localization task. However, they fail to
discern unknown types of obstacles or cluttered environments.

The Bayesian method has traditionally dominated the probabilistic
sensor fusion in building occupancy maps. To quantify the sensor
uncertainty, however, all conditional probabilities must be specified.
Because of the difficulty of completing the model, the conditional
probabilities are usually approximated. Such simplifications and poor
original sensor model cause difficulties in building a reliable map.
Also, the Bayesian theory requiresP (A) + P (:A) = 1, thus each
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Fig. 1. A typical cross section of the beam pattern showing the threshold
level.

cell in the map is initialized toPi(occupied) = 1�Pi(empty) = 0:5
if no a priory information exists. This is the same as saying: “with
50% certainty, the celli is occupied,” yet, no sensor readings have
been collected. There is a general inability to quantify the amount and
the quality of the information contained in the map when attempting
to reduce the map to essentially a binary map as required for
navigation. For example, with cell values close to uncertainty, such as
Pi(occupied) = 0.55,Pi(empty) = 0.45, one cannot deduce whether
simply not enough information has been received, or whether the
information received was contradictory thus making it likely that the
particular celli will continue hovering close to the uncertainty value
even with more readings from the given sensor. Such information, if it
was available could be used to make decisions about the employment
of different sensors and the validity of their data.

The Bayesian is certainly not the only approach that has been
engaged to solve the problem of data fusion for this type of problem.
Fuzzy maps have been applied to this problem with better results
than Bayesian approach, as reported by Gambinoet al. [12], as have
more ad hocmethods such as histogram grids [2]. Also, the Demp-
ster–Shafer formulation is not new to map-building and has long been
considered as an alternative to the traditional Baysian approach. Tiru-
malai et al. have applied the theory to full three-dimensional (3-D)
mapping of indoor environments employing stereo vision as the mea-
suring sensor. This paper aims to show that using a straight-forward
Dempster–Shafer approach with a more realistic sensor model a
significant improvement in the accuracy of the map is achieved.

II. SENSOR MODEL

Map building using ultrasonic sensors has been addressed by many
researchers and a substantial body of modeling and experimentation
work has been presented by Elfes [3], Leonard [4], Kuc & Siegel [5]
and McKerrow [9]. The sonar’s popularity can perhaps be attributed
to it’s availability, however, a number of it’s characteristics have
made it less attractive for map building. The most significant of these
are the width of the beam, the specular properties of the environment
and low bandwidth.

When a chirp, transmitted with a beam pattern shown in Fig. 1,
causes an echo to be received some time later, it is difficult to
ascertain what part of the beam has caused the return echo.

Clearly, if thresholding occurs, the only available evidence that can
be ascertained from a single firing is the range to the obstacle and
heading angle of the sensor. The only valid assumption that can be
made is that the echo is generatedsomewhereon a arc at rangeR,
within the sensor beam�� (Fig. 2).
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(a) (b)

Fig. 2. (a) Sonar sensor with beam angle� � 12�, showing the arc of
uncertainty where the probability of obstacle occurring is equal, (b) projecting
of the sensor beam on a rectangular grid assigns probabilities to cells of being
empty, full, and ignorance outside the beam.

A. Current Sensor Model and Bayesian Implementation

To filter out the inherent uncertainties of the sensor the research has
focused on probabilistic methods of evaluating the sensor confidence.
Elfes [3], Matthies and Elfes [7], Borenstein and Koren [2], and Lim
and Cho [6] all apply higher probabilities to the echo originating near
the axis of the sensor and relatively low probabilities on either side.
Since the introduction of this approach by Elfes it has been very
popular, for example [6] and the application of Fuzzy Measures [12].

For the empty cells within the beam (the sector), the probability
distribution is the greatest along the centre-line

P (�; r) = P (�)P (r) for �� � � � �; 0 � r � R� " (1)

and if the depth of the arc of uncertainty is less than cell side-length,
the probability of cells along the arc being occupied is

P (�; r) = P (�) for �� � � � �: (2)

The weight due to the angular distance from the centre is distributed
according to the semicircular shape

P (�) = 1�
�2

�2
for �� � � � � (3)

and also, decaying the intensity with range (for the empty cells only)

P (r) = 1�
r2

R2
for 0 � r � R� ": (4)

Now, to represent the state by a single value, we normalize the
probabilities around 0.5 with one denoting highest probability of cell
being occupied and zero representing the maximum certainty that the
cell is empty.

The resulting expression for modeling the cells in a sensor scan is

P (�; r)

1�P (�)P (r)
2

for �� � � � �; 0 � r � R� "

1� P (�)
2 for �� � � � �; r = R

1
2

otherwise.
(5)

The resulting probability distribution for a single scan is shown in
Fig. 3.

Fig. 3. Current model of the sonar sensor.

The scan data is combined using the Bayesian inference. The
Bayesian formalism is represented using conditional probabilities, for
exampleP (A j B), which specify the belief inA given eventB
occurring.

P (A j B) =
P (B;A)P (A)

P (B)
: (6)

So, if P (A j B) = P (A), the piece of evidenceB has no effect
on our certainty ofA, and we say that the eventsA and B are
independent. For derivation of Bayes’ rule for combining probabilities
the reader is directed to standard texts in statistics. Bayes’ rule
allows us to determine the conditional probability of the eventA,
given the observation of evidenceB using only knowledge about
the probability of observingB if A has occurred and the prior
probabilitiesP (A) and P (B).

The attraction of using Bayesian inference for map building stems
from the property that the Bayes’ updating rule facilitates recursive
and incremental computational schemes, Pearl [33]. To illustrate this
characteristic, letx denote a hypothesis,zn�1 = z1; z2; � � � zn�1

denote a sequence of events observed in the past andzn denote a
new observation. To calculate the new belief inx; P (x j zn; z

n)
one could append the new observation to the past observation set and
perform a global calculation on the whole set to arrive at the required
value. To perform such operation would be time consuming and
requires the complete history of observations. After a large number of
observations, the calculation would become prohibitive for real-time
operation. The calculation can be abridged by incremental updating.
Once the probabilityP (x j zn) is known, the additional new evidence
can be incorporated to obtain the posterior using

P (x j zin�1; z
n) = P (x j zin�1)

P (zn j zin�1; x)

P (zn j zin�1)
: (7)

Another significant characteristic resulting from such computation is
the property of associativity. This means that the order of the data
stream does not change final result. It is an important result, because,
in the case of autonomous vehicles, the order of the measurements
depends on the path taken. So, although the order of the measurement
might be different the evidence collected is nonetheless the same.
P (�) andP (r) distribute the probabilities according to the sensor

model and the map being represented by occupancy valuesP (xi j
z) where the subscripti denotes the cell andzn = z1; z2; z3;

� � � ; zn�1; z
n denotes all readings including the new evidencezn.
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So, the combination formula is

P (xi j zn) =
P (zn j xi)P (xi)

j
P (zn j xj)P (xj)

: (8)

This formulation was the starting point of our research. We endeav-
oured to improve the map-building process by analysing both, the
sensor model and the fusion algorithm.

B. New Sensor Model

Applying the previous probability distributions over the sensor
arc is fruitless if the input has been thresholded. Also, it might
seem intuitive to decrease the probabilities of the empty cells as
a function of range, however it is very difficult to justify a particular
probability profile considering the sensor has to work in varied,
unknown environments. We consider this departure from the current
approach of modeling the sensor significant.

With the constraint that there is only one source of a sonar echo
along the arc of uncertainty, the sum of probabilities of all the cells
over the sensor arc being occupied (full,F ) has to equal exactly 1

8cells(i;j)2Arc

PF (i; j) = 1: (9)

Furthermore, the arc of the sensor scan provides no information about
the negation,PE(i; j) = P:F (i; j), the cells being empty. Thus,
for a continuous domain the probability mass distribution along the
uncertainty arc would be

PF (i; j) =
1

2R�
8cells(i; j) 2 arc (10)

whereR is the range and� is the beam angle as shown in Fig. 2. By
projecting the sensor beam onto a rectangular grid of discrete cells
of equal size, withn cell being affected by the sensor arc

PF (i; j) =
1

n
8cells(i; j) 2 arc: (11)

So, we assign equal probability distribution over the sensor arc, and
since no evidence exists about the negation,PE(i; j), then we assign

PE(i; j) = 0 8cells(i; j) 2 arc: (12)

Clearly,PE(i; j) + PF (i; j) 6= 1, so we diverge from the Bayesian
approach and treat probabilities as evidence. By assigningPE(i; j) =
0 over the sensor arc, we propose that there no evidence to support the
proposition that those cells are empty. Such modeling of ignorance
leads directly to the theory of evidence.

Similarly, over the apparently unoccupied sector bounded by the
two radii at �� and the arc, there is no information about the
probability of the cells being occupied

PF (i; j) = 0 8cells(i; j) 2 sector: (13)

This represents the lack of evidence about the cells within the sector
being occupied, with the probability of being empty being constant
over the whole sector

PE(i; j) = � 8cells(i; j) 2 sector: (14)

We believe this is the most accurate model of the sonar considering
the return echo is thresholded as in the case of the commercial
POLAROID sensor module.

Because of these properties, the ultrasonic range readings lend
themselves well to the application of the Dempster–Shafer theory of
evidence with the probabilitiesPE(i; j) andPF (i; j) corresponding
to the basic probability assignmentsmi;j(E) andmi;j(F ).

The practical implementation is quite simple in the map-building
case and very similar to theMing VaseExample described in the

Shafer’s original text [10]. For a brief review of the Dempster–Shafer
theory see Appendix A.

To build an occupancy map of the environment, we first construct
a grid representing the whole space. Every discrete region of the map
(each cell in the grid) is characterized by two states,emptyand full.
Thus, we define the field of discernment,�, by the set

� = fE;Fg (15)

where theE and F correspond to the possibilities that the cell is
empty or full, respectively. The set of all subsets of� is the power
set

� = 2� = fØ; E; F; fE;Fgg: (16)

The state of each cell is described by assigning basic probability
numbers to each label in�. However, we know that for each cell
i; j in the grid

mi;j(Ø) = 0 (17)

and

A��

mi;j(A) = mi;j(Ø) +mi;j(E) +mi;j(F )

+mi;j(fE;Fg) = 1: (18)

Considering this linear dependence and assumingmi;j(Ø) = 0, it
is sufficient to storemi;j(E) andmi;j(F ) only to fully represent
the state of the system. Every cell in the map is first initialized,
mi;j(E) = mi;j(F ) = 0 andmi;j(fE;Fg) = 1, representing total
ignorance about the state of each cell. Then, as the AGV moves, scans
of the environment are taken and fused into the map. The errors in
the position of the AGV of less than the resolution of the map are
absorbed by the cell size.

The basic probability assignment for the sensor arc, withn cell
being triggered are

mi;j(F ) =
1
n

mi;j(E) = 0
8cells(i; j) 2 arc (19)

within the beam

mi;j(F ) = 0
mi;j(E) = �

8cells(i; j) 2 sector (20)

and outside the beam

mi;j(F ) = 0
mi;j(E) = 0

8cells(i; j) =2 arc; sector: (21)

The basic probability mass assigned to the empty cells is constant and
equal to the masses for the occupied cells on the arc(1=�). However,
it is clear that large range readings will cause low basic probability
assignments becausen will be relatively large. Finally, each cell in
the map is updated using the Dempster’s rule of combination

m1 �m2(A) =
8B;C2�:B\C=Am1(B)m2(C)

1�
8B;C2�B\C=Øm1(B)m2(C)

: (22)

By adding subscriptsS andM to the basic probability massesm,
we describe the basic probability assignments of the sensor and the
map. Explicitly, the new basic probability assignments for each cell
in the map are

mM �mS(E) =

mM(E)mS(E) +mM(E)mS(fE;Fg) +mM(fE;Fg)mS(E)

1�mM(E)mS(F )�mM(F )mS(E)

(23)
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and

mM �mS(F ) =

mM(F )mS(F ) +mM(F )mS(fE; Fg) +mM(fE;Fg)mS(F )

1�mM(E)mS(F )�mM(F )mS(E)

(24)

(The subscripti; j has been removed for clarity).

III. I MPLEMENTATION

At finite intervals, the AGV takes a number of scans which are
fused into the map to update the map. A typical range scan is shown
in Fig. 4.

With 40 scans overlaid, as in Fig. 5, the image shows the degree
of disorder in the raw data especially at the north wall (glazed) and
the railing in the eastern direction.

The following pseudo code describes the algorithm for processing
the range information and building a rectangular map of MaxRow
by MaxCol cells. The current state of the map is treated asa priori
evidence and described by two values,E and F , representing the
basic probability assignmentsmi;j(E) andmi;j(F ).

The scan information (a number of range measurements) is tem-
porary stored in a structurerangedata and contains the range,
the position and bearing for each range measurement (in global
coordinates). First, a beam is constructed using this information,
which is then fused with the map to obtain the posterior as seen
at the bottom of this page. Each cell that is affected by the new
sensor scan needs to be updated. These are identified in the function
BEAMand represented by a listsens . The functionFUSEchecks the
affected cells in the map, updates them using the sensor information

Fig. 4. A complete 360� scan (in local coordinates) with outline of the
obstacles in grey (glazed wall at north, lockers at the east wall and in the
middle, steel poles for railing on the right).

contained insens and returns the new map as seen at the bottom of
the page. The following function,COMBINE, computes the posterior
basic probability assignmentspost.F andpost.E , which represent
the state of the cell after thesensor information has been fused with
theprior as seen on the bottom of this page. The algorithm returns
the map with updated cell valuesmap.E and map.F for each cell
in the map.

The computational requirement of the new method is exactly the
same as the previous methods in the same grid-based configuration.
The dominant factor controlling the response time is the sensor
bandwidth. The memory requirement is greater, but not of concern
in a real application.

function MAP(map, rangedata)
for i = 1 to size(rangedata)

sens = BEAM(rangedata.x, rangedata.y, rangedata.bearing,
rangedata.range,beamangle)

map = FUSE(map, sens)
end for
return(map)

end function

function FUSE(map, sens)
for i = 1 to MaxCol

for j = 1 to MaxRow
if (cell(i,j) in beam(sens))

map(i,j) =COMBINE(map(i,j), sens(i,j))
end if

end for
end for
return(map)

end function

function COMBINE(prior, sensor)
K=1-prior.F*sensor.E-prior.E*sensor.F;
post.F =(prior.F*sensor.F +prior.F*(1-sensor.F-

sensor.E) +(1-prior.F-prior.E)*sensor.F)/K

post.E =(prior.E*sensor.E +prior.E*(1-sensor.E-
sensor.F) +(1-prior.E-prior.F)*sensor.E)/K

return(post)
end function



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998 627

Fig. 5. Complete 360� scans (in global coordinates) from 40 different
positions in the space.

(a) (b)

Fig. 6. (a) The path that generated the sequence of data for the example in
Figs. 7 and 8, showing the position of the camera and (b) the photo of the
environment (note glazed north wall).

IV. EXPERIMENTAL RESULTS

We have built a ring of Polaroid ultrasonic transducers and a single
sensor scanner with a sensor mounted on the shaft of a stepper motor.
These transducers operate at 49 kHz, and project an axisymmetric
beam with an included angle of approximately 22�.

Two large areas were surveyed out to a 200 mm grid with accuracy
better than 3 mm. Then, by placing the rotating sensor rig at each
of the surveyed points, a set of 400 readings were taken and saved.
To perform the mapping, a virtual path (a walk-through) was gen-
erated by retrieving the corresponding sonar scans sequentially and
performing the fusion process. Other inputs included the resolution of
the map, the initial robot position and orientation, the number of scans
taken from each position and the maximum range. Due to the low
bandwidth of the sonar and the computation order of the algorithm,
these variables directly control the computation time.

The following example demonstrates the quality of building al-
gorithm. Fig. 6 shows the path along which scans were taken at
200 mm intervals.

This particular run was done in an area constructed of a number
of different types of materials, such as glass, brick and concrete
walls, railings, doors, and is furnished with lockers, chairs, and water
coolers. The cell size was 50 mm, maximum range 10 m, map size
200� 200 cells (covering area of 10� 10 m2).

The final map is shown in Fig. 7, in a 3-D representation, and in
Fig. 8 as grey level image. It can be clearly seen that most of the fea-
tures of the environment (corners, walls, etc.) are accurately mapped.
The difficulties of using the ultrasonic sensor in complex areas such
as long specular walls are to large extent overcome by this method.

(a) (b)

Fig. 7. Occupancy maps generated using 120 sonar scans showing the basic
probability assignments (a)mF;i;j and (b)mE;i;j . (Coordinates are in pixels,
with each pixel representing area 200� 200 mm, a patch of 4� 4 cells. The
reduction in resolution is due to clarity of presentation).

(a) (b)

Fig. 8. Grey level images showing the basic probability assignments (a)
mF;i;j and (b)mE;i;j . (black:m = 1, white: m = 0).

(a) (b)

Fig. 9. Cross section of the map (corresponding tox = 18 in Fig. 7),
showing the accumulation of evidence; how the true states of the cells are
evolving with time. The obstacle in the southern part of the room (y � 12)
is clearly defined.

Fig. 10. Occupancy maps generated using the Bayes’ fusion rule, values
above and below 0.5 separated into full and empty map res. and normalized
into the interval[0 1] for comparison to the D-S method.

To show the accumulation of evidence in particular cells, a cross
section of the map is presented in Fig. 9. The basic probability
assignments forE andF are plotted against time (360� scans).

Evaluating the occupancy maps, it is immediately apparent that
the Dempster–Shafer approach provides much better solution to the
map-building problem. The Bayes’ method gives good results in
certain cases, but its performance is generally very poor when the
maps are compared to the Dempster–Shafer result Fig. 10. Certainly,
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Fig. 11. Map of a corridor: (a)mF;i;j and (b)mE;i;j .

diffusion into free-space still occurs (this highly apparent in all
representations at the glazed wall on the northern boundary), however,
in the Dempster–Shafer method this leakage is minimized but more
importantly, a row of occupied cells clearly defines the barrier.
This barrier is either not defined at all or very faint in the other
representations. Fig. 8 clearly shows that in the D-S map there in
fact are two glass walls aty � 9 m, betweeny � (1.5,4.2) m and
y � (4.4,7.1) m. Compare this to the result of the old method. This
is certainly an exiting result considering the properties of the sensor
and the environment.

The algorithm was further validated using data from a long corridor
(max. 2.5 m wide and 24 m long) with very difficult surfaces such
as long glazed walls and smooth concrete (Fig. 12). The cell size
is again 50 mm and the virtual path executed start at coordinates
(5.2, 24.5) and ends at (5.2, 0.5). With a range of building materials
forming the environment the maps clearly show the obstacles as well
as free areas (Fig. 11).

V. CONCLUSION

This work presents a novel application of the theory of evidence
and significantly improves the map building process for autonomous
vehicles. It also shows the importance of defining an accurate sensor
model. The work considers the uncertainties of the ultrasonic sensor
measurements and make use of the Dempster–Shafer reasoning to
integrate sensor and modeling information. When compared with
other probabilistic methods, the success of this method is attributed
to the following characteristics of this method.

It differs from the Bayes approach by allowing support for more
than one proposition at a time, rather than a single hypothesis. It
is interval based, as defined by the upper and lower probability
bounds,Pls and Bel, allowing lack of data (ignorance) to be mod-
eled adequately. This model no longer requires full description of

Fig. 12. Photo of the corridor.

conditional (or prior) probabilities and small incremental evidence
can be adequately incorporated. Also, it allows to quantify the
undistributed probability masses, thus making assessment about the
quality of the posterior probabilities. The structure of 2-D map is
largely independent of the method and can be implemented by other
representations (grid, quadtrees, hextrees).

Experimental results with the ultrasonic sensor confirm the capa-
bilities of a grid-based application and algorithms developed. It is
evident that the Bayes approach is overly sensitive to outliers as
also observed by Gambinoet al. [12]. Whereas in [12] it is aimed
to solve the problem using fuzzy logic and fuzzy measures with
comparison to the benchmark Bayes approach, we have aimed to
improve the sensor mode and employ the theory of evidence to fuse
the measurements. It would certainly be interesting and to formally
and objectively compare the results of the two approaches, fuzzy
methods and the evidential reasoning.

APPENDIX

DEMPSTER-SHAFER THEORY OF EVIDENCE

The Dempster–Shafer theory of evidence is characterized by a
frame of discernment (FOD), basic probability assignment (bpa),
belief (Bel) and plausibility (Pls) functions and the Dempster’s rule
of combination (Shafer [10]).

The frame of discernment, denoted�, is defined to be a finite set
of labels representing mutually exhaustive events.

The basic probability assignment is the functionm : 	 ! [0; 1],
where	 is the set of all subsets of�, the power set of�; 	 = 2�.
The functionm can be interpreted as distributing probabilities to each
of the labels in	, with the following criteria satisfied

A�	

m(A) = 1 (A1)

m(Ø) = 0: (A2)

Thus, the labelA is assigned a basic probability numberm(A)
describing the degree of belief that is committed to exactlyA.
However, the total evidence that is attributed toA is the sum of
all probability numbers assigned toA and its subsets

Bel(A) =
8B:B�A

m(B): (A3)
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The functionBel : 	! [0; 1] is the quantity of evidence supporting
the propositionA and has the following properties:

Bel(Ø) = 0 (A4)

Bel(�) = 1 (A5)

Bel(A) + Bel(:A) � 1 (A6)

Bel(A) � Bel(B) if A � B (A7)

Bel(A \B) = min(Bel(A);Bel(B)): (A8)

The plausibility of a propositionA can be thought of as the amount
evidence that does not support its negation:A. It is defined as
Pls : 	 ! [0; 1], with the following properties:

Pls(A) = 1� Bel(:A) = 1�
8B:A 6�B

m(B) (A9)

Pls(A)� Bel(A) � 0 (A10)

Pls(A [B) = max(Pls(A);Pls(B)): (A11)

The state of each label (described by bpa) is updated by combining
a new independent source of evidence using the Dempster’s rule of
combination

m1 �m2(A) =
8B;C2	:B\C=A

m1(B)m2(C)

1�
8B;C2	B\C=Øm1(B)m2(C)

(A12)

m1 �m2(Ø) = 0: (A13)

TheBel andPls functions are often denoted as upper and lower prob-
abilities. The amountPls.(A)� Bel(A) the additional undistributed
(plausible) evidence that is compatible with both hypothesesA and
:A being true.
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Sliding and Hopping Gaits for the Underactuated Acrobot

Matthew D. Berkemeier and Ronald S. Fearing

Abstract—In this paper, a new example of a planar hopping robot is
considered, which has only one actuated joint. Simulations demonstrate
that the robot can perform both sliding and hopping gaits, despite the fact
that almost all other hopping robots have at least two actuated joints.

Index Terms—Acrobot, double pendulum, hopping robot, legged robot.

I. INTRODUCTION

Most of the previous work on hopping in robotics has focused
on the mechanism designed and built by Raibert [1]. His planar
hopper had two actuated joints: a springy prismatic leg and a revolute
hip joint. It was capable of hopping in place, hopping at various
forward speeds, and leaping over small obstacles. The use of two
actuated joints allowed Raibert to dedicate one actuator to controlling
the hopping height and the other to controlling body attitude (note,
however, that Raibert’s robot was underactuated in the same sense
as the robot studied in this paper). Others who have built hopping
robots include Kanai and Yamafuji [2] and Papantoniou [3]. In both
these cases as well, two actuated joints were used to achieve balance
and control hopping height. In this paper, we consider the problem
of controlling both balance and thrust with only one actuated joint.

Koditschek and B̈uhler, Vakakiset al., M’Closkey and Burdick, and
Li and He [4]–[7] all studied the hopping cycle of Raibert’s robot.
By considering simplified dynamics of the hopper and the associated
return maps, various predictions could be made about the hopper’s
behavior as a function of parameters. Among the interesting results
were the existence of stable limit cycles with period 2 Poincar`e maps
(so-called “limping gaits”). Although this approach is, in principle,
applicable to any legged robot, it would not be trivial to apply it
the robot described in this paper. To derive a Poincar`e map one
needs to be able to solve the dynamical equations either exactly or
approximately. The equations for the Acrobot are highly nonlinear
and there is no closed-form exact solution. There is also not an
obvious approximation method to apply to the Acrobot.

Li and Montgomery [8] studied the dynamics of the flight phase for
Raibert’s robot and considered the problem of optimally performing
a somersault in the air by using the holonomy generated by internal
motions. Although the goal in this paper is also to use internal motions
to achieve a particular orientation while off the ground, no attempt
is made to perform the motions in an optimal fashion. Others have
examined control of legged robots in flight phase without a discussion
of holonomy. Representative examples include Hodgins and Raibert
[9], Playter and Raibert [10], and Lapshin [11].

Much was learned from studying Raibert’s hopper. However, it
is important to consider new examples. Typically, it is only by
comparing the results of many specific examples of a phenomenon
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